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Abstract: Some control methods by using nonlinear effects are introduced in this paper. The 1/3-third order subharmonic
resonance is stabilized independent of magnitude of disturbance by using nonlinear coupling to an absorber. Nonlinear
characteristics of the hunting motion of railway vehicle wheelset are controlled and the system is globally stabilized
by the nonlinear feedback. The third topic is on a positive utilization of nonlinear phenomena. Motion control of an
underactuated manipulator is carried out under high-frequency excitation without state feedback. The above control
strategies are based on control of slowly-varying dynamics. The averaged equations governing the slowly-varying
dynamics, which are obtained by the method of multiple scales, center manifold theory, and so on, are modified and the
resulting change of nonlinear characteristics realize the stabilization control and motion control.
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NOMENCLATURE

a = amplitude of the main system b =
amplitude of the absorber P1,P2,P3 =
constant coefficient determined by di-
mension
ε = dimensionless excitation amplitude
ν = dimensionless excitation frequency
µz = damping coefficient of main system
µθ = damping coefficient of pendulum
σ = detuning parameter of main system

ρ = detuning parameter of absorber
γ = initial hapse of main system
φ = initial phase of absorber
ωθ = natural frequency of absorber
y = lateral motion of wheelset
ψ = yawing motion
r = representative amplitude on cener
manifold
α1 = linear coefficientet of normal form

α3 = nonlinear coefficient of normal
form

θ1 = angle of the first joint
θ2 = relative angle of the second link
θ1a = excitation amplitude of the first
link
θ1o f f = offset of the first link
σ = inverse number of squared excittion
frequency of the first link

INTRODUCTION

By using averaging method, the method of multiple time scales, center manifold theory, and so on (Nayfeh and Mook,
1979, Carr, 1981), we obtain averaged equations expressing slowly-varying dynamics which govern essential feature of
nonlinear phenomena. Therefore, if we modify the averaged equations, it is possible to stabilize nonlinear resonance and
to realize dynamical systems with desired nonlinear features. In this paper, we show some stabilization control methods
based on modifications of slowly-varying dynamics and consider the positive utilization of nonlinear phenomena to the
motion control for a underactuated manipulator.

In the next section, we consider stabilization of 1/3-order subharmonic resonance. By using a pendulum-type vibration
absorber, the main system which is excited with 1/3-order subharmonic resonance is stabilized. The appropriate tuning
of the natural frequency of the absorber modifies original averaged equations in the case without absorber. Then, the
slowly-varying dynamics is controlled and the resonance is stabilized. Furthermore, we consider the hunting motion of
railway vehicle wheelset. The phenomenon is self-excited oscillation which is produced in the case of higher running
speed than a critical speed. Finally, we deal with an application of high-frequency excitation to the motion control of
an underactuated manipulator. By the modification of slowly-varying dynamics, the various bifurcation phenomena are
emerged and the equilibrium states are changed approximately to realize the motion control.

STABILIZATION OF 1/3-ORDER SUBHARMONIC RESONANCE BY AN AUTO-PARAMETRIC
VIBRATION ABSORBER

Analytical model and the basic equation

We consider a magnetically levitated body as shown in Fig. 1. The body is freely moved in the vertical direction. The
magnets on the body and the base repulse with same magnetic pole. The base magnet is moved sinusoidally in the vertical
direction. By taking into account nonlinearly of the restoring force until cubic term, the dimensionless equation of motion
of the magnetically levitated body is expressed as (Yabuno et al, 1999):

z̈+ µzż+(1+ ε cosνt)z+αzzz2 +αzzzz3 = ε cosνt, (1)
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Figure 1 – Analytical model of a magnetically
levitated body.
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Figure 2 – Frequency response curve of the main
system.
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Figure 3 – Magnetically levitated body with an
auto-parametric vibration absorber.
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Figure 4 – Frequency response curve of the main
system (absorber in action).

where the natural frequency is normalized as 1.

Theoretical analysis

We consider the 1/3-order subharmonic resonance in the case when the excitation frequency is in the neighborhood
with triple the linear natural fernery (ν = 3+σ ). We seek an approximate solution as

z = εz1 + ε2z2 + ε3z3 + · · · . (2)

By using the method of multiple scales, we obtain the following approximate solution:

z = a(t)cos
{ν

3
t + γ(t)

}
+2Λcosνt +O(ε), (3)

where the time variations of a and γ are governed with averaged equations:

da
dt

= −1
2

µza− P2

4
a2 sin3γ (4)

a
dγ
dt

= −(
P1

2
+

σ
3

)a− P2

4
a2 cos3γ − P3

8
a3. (5)

Letting da/dt = dγ/dt = 0 yields amplitude a and initial phase γ in the steady date. The frequency response curve is
described as Fig. 3, where the solid and dashed lines stand for stable and unstable steady state amplitude. It is noticed that
the 1/3-order subharmonic resonance can be produced depending on the magnitude of disturbance. The control objective
is here to avoid the occurrence of 1/3-order subharmonic resonance in dependent of the magnitude of initial conditions
and disturbance.

Control strategy

The dependency of the occurrence on the initial condition and the disturbance is found by the averaged equation, which
is the condition not to produce the secular term in z3. By attaching a pendulum-type vibration absorber and changing the
averaged equations, we try to stabilize the 1/3-order subharmonic resonance. The effect of the absorber on the main



H. Yabuno

system needs to modify the averaged equation of main system Eqs. (4) and (5). To this end, the natural frequency of the
absorber is tuned to be a half the natural frequency of the main system. Then, the averaged equations for the main system
and the absorber are

da
dt

= −1
2

µza− P2

4
a2 sin3γ − mrωθ

2ρ
4

b2 sin(γ −2φ )

− mrω2
θ

2
sin(γ −2φ )b2 (6)

a
dγ
dt

= −
(

P1

2
+

σ
3

)
a− P2

4
a2 cos3γ − P3

8
a3 +P12ab2 − mrωθ

2ρ
4

b2 cos(γ −2φ )

− mrω2
θ

2
b2 cos(γ −2φ ) (7)

The frequency response curve is shown in Fig. 4. Compare with that in the case without absorber, the non-trivial steady
state is changed to unstable one. As a result, because only one stable steady state is trivial, the 1/3-order subharmonic res-
onance cannot be produced independent of disturbance and initial condition. Experimental confirmation of the proposed
control method is carried out by using a simple apparatus (Yabuno et al, 1999). In the above control strategy, the averaged
equations expressing slowly-varying dynamics is focused and they are modified to avoid the occurrence of the 1/3-order
subharmonic resonance.

NONLINEAR CONTROL FOR THE HUNTING MOTION OF A RAILWAY VEHICLE WHEELSET

Railway vehicle wheelset experiences the problem of hunting above a critical running speed (Whiclens, 1965) due
to contact force between the wheels and the rails (Kalker, 1990). The resonance is flutter-type destabilization and Hopf
bifurcation occurs at the critical speed. The nonlinearity of the bifurcation is subcritical (Molle and FGash, 1992). Even
below the critical speed which is obtained by linear analysis, the hunting motion can be produced depending on the
magnitude of disturbance. Here, control objective is to avoid the occurrence of the hunting motion below the critical
speed independent of the magnitude of disturbance. Also in this section, we focus on slowly-varying dynamics, which is
derived through center manifold theory.

Nonlinear analysis and control of hunting motion

We consider the behavior of a single suspended railway wheelset at a constant running speed v on a straight track as
shown in Fig. 5. The wheelset can be freely moved in the lateral and yawing directions, y and ψ . The dimensionless
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Figure 5 – Analytical model of a railway vehicle
wheelset.
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Figure 6 – Bifurcation control on center manifold.

lateral motion y∗ and yawing motion ψ are expressed as follows (Yabuno et al, 2002)

ẋ = Ax +




0
N2(x)

0
N4(x)


 ,x =

[
y∗ ẏ∗ ψ ψ̇

]T (8)
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A =




0 1 0 0
−c1 −c2 c3 0

0 0 0 1
−c5 0 −1 −c4




N2(x) = c1ε ẏ∗ + c6y∗3 + c7y∗2ψ + c8y∗ψ2 + c9ψ3

N4(x) = c4ε ẏ∗ + c10y∗3 + c11y∗2ψ + c12y∗ψ2 + c13ψ3,

where dimensionless parameters c1 · · ·c13 are assumed in some studies (Lorant and Stepan, 1996, Molle and Gasch, 1992).
The anti-symmetry stiffness matrix can produce self-excited oscillation through Hopf bifurcation. The dimensionless
running speed v∗ is assumed as follows:

v∗ = v∗c(1+ ε)(|ε| << 1), (9)

where v∗c is the dimensionless linear critical speed which is obtained by using root loci.

Based on center manifold theory, the fast and slow dynamics are separated. Because the slow dynamics determines the
stability, dynamics reduced on the center manifold is controlled to suppress the hunting motion below the critical speed.
Furthermore, the normal form on the center manifold is expressed as

ṙ = a1εr +a3r3, β̇ = ω∗ +b0ε +b2r2. (10)

Because it has been indicated in some studies (Molle and Gasch, 1992, Lorant and Stepahn, 1996) that the cubic coefficient
a3 is negative, it concludes that the bifurcation at the critical speed is a subcritical Hopf bifurcation and the hunting motion
can occur for large disturbance even under the critical speed. In order to suppress the hunting motion independent of the
magnitude of disturbance below the critical speed, We design the nonlinear feedback gain on the center manifold to bend
the bifurcation branch to the right as shown in Fig. 6 (Yabuno, 2005). By applying cubic nonlinear feedback, −αr3, the
above normal form is changed as follows:

ṙ = a1εr +(a3 −α)r3, β̇ = ω∗ +b0ε +b2r2, (11)

where nonlinear feedback gain α is selected so that the coefficient of the cubic term is negative, i.e., a3 −α < 0. Then
the nonlinear characteristic of the bifurcation point is supercritical as shown in Fig. 6, and there is no unstable limit
cycle below the critical speed. The validity of the proposed control method is experimentally confirmed by using a simple
apparatus (Yabuno et al, 2005). Also in this method, we focus on slowly-varying dynamics and carries out the stabilization
of the amplitude

MOTION CONTROL OF AN UNDERACTUATED MANIPULATOR BY BIFURCATION CONTROL
UNDER HIGH=FREQUENCY EXCITATION

Manipulators with free joints (links) are called underactuated manipulators and in these systems, the number of gener-
alized coordinates is greater than the number of actuators. There have been many studies on the control of underactuated
manipulators (a comprehensive list of references can be found in (Arai et al, 1998)). While previous control methods are
based on feedback control with respect to the free link, the method presented in this study does not require any information
on the motion of the free link (Yabuno et al, 2004). We focused on slowly-varying dynamics as the topics in the previous
sections. However, the dynamics of the controlled state is not slow in cntrast with these topics. We apply high-frequency
excitation so that the state dynamics can be regarded as slow dynamics.

Two-link underactuated manipulator

The control objective is for the two-link underactuated manipulator (Fig. 7 shows an analytical model ) to swing up
the second (free) link, which hangs down in the direction of gravity in the initial state, to the state where the second (free)
link points in the direction opposite to that of the gravity and also to stabilize the free link. The control is based on the
actuation of the perturbation of bifurcations emerged under high-frequency excitation. The gravity effect is in the positive
direction of the x′ axis.

Here we set the position of the first link according to

θ1 = θ1a cosωt +θ1o f f , (12)

where the first term is for application of the high-frequency excitation to the second link. The second term expresses
the configuration of the first link with respect to the direction of the gravity effect. The essental strategy of the proposed
control is utilization of the dynamics stabilization phenomena which is seen in inverted pendulum. Inverted pendulum
is stabilized without feedback control under the high-frequency vertical excitation as shown in Fig. 8. The pendulum is
known as Kapitza pendulum (Kapitza, 1965). Under the excitation of Eq. (12), the equation governing the motion of the
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Figure 7 – Analytical model of an underactuated
manipulator.
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Figure 9 – Strategy of motion control for the underactuated manipulator: swing-up and stabilization by actuating
the perturbation of pitchfork bifurcations (solid line: stable, dashed line: unstable) ((a) θ1o f f = 0, (b) θ1o f f = π/4,

(c) θ1o f f = π/2) .

second link (free link) is expressed in dimensionless form as

θ̈2 + µθ̇2 −θ1a(1+ ccosθ2)cost∗

+cθ 2
1a sinθ2 sin2 t∗ +σ sin(θ1a cos t∗ +θ1o f f +θ2) = 0, (13)

where ( ˙ ) denotes the derivative with respect to dimensionless time, t∗ = t ·ω , and the dimensionless parameter values
corresponding to the subsequent experiment are c = 1.49,σ = 1.43× 102/ω2, and µ = 0.850/ω , where the excitation
frequency of the first link ω is variable (Yabuno et al, 2005).

Proposition of the motion control method

By applying the method of multiple scales, Eq. (13), which is a nonautonomous system, can be transformed into the
autonomous differential equation for the case of 0 < σ << 1:

θ̈2 + µθ̇2 +σ sin(θ1o f f +θ2)− c2θ 2
1a

2
sinθ2 cosθ2 = 0. (14)

The bifurcation diagram obtained from Eq. (14) is perturbed by the magnitude of the offset of the excitation θ1o f f , as
shown in Fig. 9 (a), (b), and (c). The three branches of (1) in Figs. 9(a) and (2) in Fig. 9(b) and (c), which are stable steady
states, are smoothly connected by a continuous change of the value of θ1o f f from 0 to π/2. Therefore, the high-frequency
excitation indicated by point a in Fig. 9, i.e., σ < c2θ 2

1a/4, causes the swing-up of the second link to the upright position
and stabilize the free link at the upright position.

We experimentally confirm the validity of the proposed method. The swing-up and the stabilization of the free link
are carried out as shown in Fig. 10, by applying the high-frequency excitation and by the actuation of the perturbation,
i.e., by the change of the offset of the excitation θ1o f f .

SUMMARY

We proposed stabilization control methods and motion control method. In these methods, the slowly-varying dynamics
are derived from the method of multiple scales and center manifold theory for the problems of magnetically levitated body
and the railway vehicle wheelset, respectively. In the study of underactuated manipulator, in order to regard the motion
of the free link as slowly-varying dynamics, we apply high-frequency excitation and actuate the perturbation of the
resulting bifurcation to emerge the various stable steady state. In this paper, we introduce stabilization control methods
by using nonlinear effects and motion control by producing the bifurcation phenomena and actuating their perturbation.
As the systems to be controlled become more complex, it becomes more important to positively utilize inherently existing
nonlinearlity in mechanical systems.
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Figure 10 – Swing-up and stabilization of the underactuated manipulator (ω/(2π) = 45Hz).
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