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Abstract: The goal of this article is to contribute to the development of the modern high-order boundedness adaptative
QUICKEST scheme by Kaibara et al. as a new methodology for scalar transport. The scheme is based on NVD (Normal-
ized Variable Diagram) approach by Leonard, Gaskell and Lau, and on TVD (Total Variation Diminishing) constraints
by Harten, Yee and Roe. A flux limiter mechanism has been implemented in order to deal with steep gradients. After
a short review of the various schemes and the associated limiters, we compare the adaptative QUICKEST scheme with
several well known standard upwind schemes for solving the Euler equations of the gas dynamics and pure convection
of scalar discontinuities.
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INTRODUCTION

During the last decades much progress has been achieved in designing bounded high order upwind approximation
schemes for convection dominated problems, especially in fluid flows at high Reynolds and high Mach numbers. In these
problems, numerical instabilities, shows up in the form of spurious oscillations, can be produced by step gradients which
usually grow and break down the numerical algorithm. In recent years, efforts have been made to build such schemes
which can give high order accuracy without introducing spurious oscillations and converge to physically correct solution.
We refer interested reader to “Dorthea and Gour-Tsyh (1995)”, and reference listed therein, for an introduction to the
field.

One of the major obstacles to be addressed in solving convection dominated problems is making the decision about
which high order upwinding technique should be used to approximate the advection terms, in order to guarantee an
accurate oscillation free solution without introducing excessive artificial dissipation. The first order upwind, for instance,
is unconditionally bounded (within CFL conditions), but it can lead to large errors causing the solution grossly inaccurate.
On the other hand, the scheme of “Lax and Wendroff (1960)” and the QUICK by “Leonard (1979)” can provoke spurious
oscillations near discontinuities, causing numerical instabilities.

There are mainly two common ways to reduce spurious oscillations, namely: i) add an artificial viscosity; and ii) apply
limiters. The disadvantage of adding artificial viscosity in model equations is that the performance is problem dependent,
and the principal disadvantage of limiter approach is that the accuracy degenerates (to first order) near discontinuities.
Control oscillations and, at the same time, minimize artificial dissipation by applying bounded high resolution schemes
continue to be topics of importance and interest in the CFD (Computational Fluid Dynamics) community.

In this article, we will not discuss the technique of adding artificial viscosity in the equation models. We are interesting
in a combination of NVD “Leonard (1988)” and TVD “Harten (1984)” approaches. The basic idea is to use a linear
combination of a low order and a high order accurate scheme by using a limiter function. First, we give a short review of
the NVD/TVD upwind methodologies for solving scalar transport equations. And then we present the development of the
high order boundedness adaptative QUICKEST, proposed by “Kaibara et al. (2005)”, which is based on unsteady analysis
of the 1D advection equation and retains the Courant (or CFL) number as a free parameter.

MATHEMATICAL FORMULATIONS

Harten’s TVD Concept

Given a sequence of discrete approximations φ(t) = {φi(t)}i∈ZZ to a scalar, the Total Variation (TV) at time level t of
this sequence is defined by

TV (φ(t)) = ∑
i∈ZZ

|φi+1(t)−φi(t)|.
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Difference schemes which give rise to such TV diminishing are called TVD schemes, after “Harten (1984)”. Here di-
minishing means non increasing. A desirable property for an approximate solution to share with the exact one is that its
TV should decrease in time “Tadmor (1998)”. TVD is a purely scalar property, which ensures that spurious oscillations
are completely removed from the numerical solution of a nonlinear conservation law. Formally, consider the explicit
difference scheme involving (2k +1)-points of the form

φ
n+1
i = H(φ n

i−k, · · · ,φ n
i+k), ∀n ≥ 0, i ∈ ZZ, (1)

where H : IR2k+1 → IR is a continuous function and φ n
i denotes an approximation of the exact solution φ at the uniform

grid point (xi, tn), being xi = i∆x, tn = n∆t, with ∆x and ∆t the spatial and the temporal grid spacing, respectively. By
definition, the scheme (1) is TVD if

TV (φ n+1)≤ TV (φ n). (2)

Before proceeding to the discussion of TVD schemes, it is essential to discuss the TVD constraints using the one
dimensional scalar conservation law

∂φ

∂ t
+a

∂φ

∂ t
= 0, a > 0. (3)

An general explicit finite difference numerical scheme to the equation (3) is

φ
n+1
i = φ

n
i −Ci−1/2δi−1/2φ

n +Di+1/2δi+1/2φ
n, (4)

where δ is the central difference operator and Ci−1/2 and Di+1/2 are functions of φ n and, in general, the choice of these
coefficients is not unique. By Harten’s lemma, the sufficient conditions to secure inequality (2) (the scheme to be TVD)
are

Ci+1/2 ≥ 0 Di+1/2 ≥ 0 and Ci+1/2 +Di+1/2 ≤ 1, for all i. (5)

For example, the first order upwind is a TVD scheme under de CFL condition |a∆t/∆x|< 1.

High Resolution Schemes and Flux Limiters

Any finite difference of the type (4) for the convective transport of a scalar property φ can generally be written as the
sum of the first order upwind scheme and a anti diffusive flux as

φ
n+1
i = φ

n
i −νδi−1/2φ

n− 1
2

ν(1−ν)
[ψ(ri+1/2)

ri+1/2
−ψ(ri−1/2)

]
δi−1/2φ

n, (6)

where ν = a∆t/∆x is the Courant number (or CFL), ψ(r) is the flux limiter function, taken to be nonnegative to maintain
the anti diffusive flux, which dictates the order of the scheme and its boundedness properties, and the ratio of consecutive
gradients

ri+1/2 =
δi−1/2φ n

δi+1/2φ n (7)

is a measure of the smoothness of the solution. High resolution schemes of the form (6) are a compromise between the
classical first order upwind and high order difference schemes. The central idea of this formulation is to avoid numerical
oscillations and, at the same time, to maintain the numerical diffusion as small as possible. For instance, second order
accuracy can be attained by a hybridisation between Lax-Wendroff (ψ = 1) scheme and Beam-Warming (ψ = r) scheme
(see “Warming and Beam” (1976)”)

ψ(r) = (1−β ) ·1+β · r, 0 ≤ β ≤ 1. (8)

It can be shown that the finite difference approximation (6), with the flux limiter given by (8), is not unconditionally
bounded (TVD). Sweby showed that a TVD scheme of the form (6) can be obtained by setting the flux limiter respecting
the constraints

ψ(r) = min(2r,2) if r > 0 and ψ(r) = 0 if r ≤ 0. (9)

In order to satisfy the TVD principle (i.e., bounded) and, at the same time, to be second order, the scheme (6) must possess
a flux limiter that lies within the shared area of Fig. 1. The reader is refereed to “Arora and Roe (1997)” for obtaining a
discussion of how to obtain an ideal limiter.

A number of flux limiters have been developed over the years, being that the must well known are Minmod

ϕ(r) = min{r,1}

and Superbee
ϕ(r) = max{0,min{1,2r},min{0,2}}

by “Roe (1985)”, and

ϕ(r) =
r + |r|
1+ |r|

by ”Van Leer (1974)”.
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Figure 1 – Second order TVD region.

NV Formulation and CB Criterion

The variation of a convected variable φ in a computational cell can be represented by a function linking the values φD,
φU and φR, which represent, according to the convective velocity direction on a given f face of this computational cell, the
Downstream, Upstream and Remote-upstream neighbouring nodes, respectively (see Fig. 2). If the functional relationship
F involving these nodes is prescribed, then the facial value that is required at the f face of a computational cell can be
determined. In order to construct a high order bounded convection scheme that preserves monotonicity, “Leonard (1988)”

Figure 2 – Neighboring nodes D,U and R of the f face.

and “Leonard (1991)” introduced the Normalized Variable Formulation (NVF), while “Gaskell and Lau (1988)” proposed
the Convection Boundedness Criterion (CBC). The NVF and CBC constitute the basis on which high-order oscillation-
free convection schemes are constructed. From now on, we shall give a brief description of these two concepts.

Considering the f face of a computational cell (see Fig. 2), the normalized variable (NV) of Leonard (see “Leonard
(1988)”) φ̂ is defined as

φ̂ f =
φ f −φR

φD−φR
. (10)

The advantage of this transformation is that a face value φ̂ f depends on φ̂U only, because φ̂D = 1 and φ̂R = 0. If at
most three neighbouring nodal values are used to approximate point values, such as those appearing in Eq. (10), then a
necessary and sufficient condition for guaranting a bounded solution is the CBC. It can be formulated as

φ̂ f =



F(φ̂U ) Continuous

F(φ̂U ) = 1 if φ̂U = 1

φ̂U < F(φ̂U ) < 1 if 0 < φ̂U < 1

F(φ̂U ) = 0, if φ̂U = 0

F(φ̂U ) = φ̂U if φ̂U < 0 or φ̂U > 1

(11)

The CBC is illustrated in Fig. 3, where the line φ̂F = φ̂U and the shaded area form the region over which it is valid.
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Figure 3 – CBC region in the φ̂ f − φ̂U plane.

TVD Principle in NVF

The relationships between TVD and CBC is what follows. First, note that the ratio of consecutive gradients

φU −φR

φD−φR

can be written in NV as

r f =
φ̂U

1− φ̂U
. (12)

By using this relation and the TVD restrictions (9), the functional relationship between φ̂ f and φ̂U , that is φ̂ f = F(φ̂U ),
can be expressed as

φ̂ f =


≤ 1, ≤ 2φ̂U

≥ φ̂U if 0 < φ̂U < 1

= φ̂U if φ̂U ≤ 0 or φ̂U ≥ 1

(13)

In summary, in order to satisfy the TVD restrictions the value φ̂ f must lie within the dashed line area in the monotonic
region 0 < φ̂U < 1 and on the line φ̂ f = φ̂U outside the monotonic region (see Fig. 4).

φf
^ =  2 φU

^

1

1

Figure 4 – TVD region in normalized variable
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Adaptative QUICKEST Scheme

The discretization of the advective terms is performed by using the adaptative QUICKEST, a bounded high order
upwind scheme proposed by “Kaibara et al. (2005)”. This scheme was derived in the context of the NVF and by enforcing
the TVD property. Consequently, it satisfies CBC. The main idea in the derivation of this scheme was to combine accuracy
and monotonicity, while ensuring flexibility. It is based on unsteady analysis of the 1D advection equation and retains the
Courant number as a free parameter. It can also ensure that total variation of the variables does not increase with time;
thus no spurious numerical oscillations (maxima or minima) are generated. The numerical solution can be second or third
order accurate in the smooth parts of the solution, but only first order near regions with large gradients. In summary, this
advection scheme is implemented by the functional relationship

φ̂ f =



(2−θ)φ̂U , 0 < φ̂U < a

φ̂U + 1
2 (1−|θ |)(1− φ̂U )− 1

6 (1−θ 2)(1−2φ̂U ), a ≤ φ̂U ≤ b

1−θ +θφ̂U , b < φ̂U < 1

φ̂U , elsewhere

(14)

where θ=Vf ·∆t/∆x is the local Courant number, Vf being a convective velocity, and the constants a and b are as follows

a =
2−3|θ |+θ 2

7−6θ −3|θ |+2θ 2 and b =
−4+6θ −3|θ |+θ 2

−5+6θ −3|θ |+2θ 2 .

Figure 5 shows the adaptative QUICKEST scheme in the normalized variable diagram (φ̂U − φ̂ f plane).
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Figure 5 – Graphics in the normalized variable of φ̂ f for QUICKEST (red) and adaptive QUICKEST with θ = 0.5 (full)
blue.

NUMERICAL TESTS

In this section, we compare numerical results of the adaptative QUICKEST scheme with those of the conventional
Minmod, Superbee and Vanleer schemes. First, we assess the performance of the scheme for the 1D Euler equations, and
then we simulate the convection of a step profile in a square domain.

Sod Tube problem

The 1D Euler equations of gas dynamics (see “Sod (1978)”) are given by

∂

∂ t
U+

∂

∂x
F(U) = 0, (15)

where U = (ρ,ρv,E)T , F(U) = (ρv,ρv2 + p,v(E + p))T , and ρ , v, ρv, E, p are density, velocity, momentum, total energy
and pressure, respectively. In order to solve the equation (15), the ideal gas equation of state p = (γ−1)(E− 1

2 ρv2), with
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γ = 1.4, and initial conditions are required. In this case, the following initial conditions are used:

(ρ,v, p)T =

 (1,0,1)T , x < 0.5

(0.125,0,0.1)T , x ≥ 0.5.

Figures 6, 7, 8 and 9 depict, respectively, the graphical results obtained for Minmod, Superbee, Vanleer and adaptative
QUICKEST schemes on mesh of 200 computational cells and at the output time t = 0.245s. In all figures the continuous
line (blue) corresponds to the reference solution (obtained by applying the first order upwind scheme on a fine mesh of
1000 cells) and symbols (red) corresponds to the numerical solution. We see from Fig. 9 that the adaptative QUICKEST
scheme suppresses the oscillations and give good resolution at corners, in the same way as Minmod, Superbee and Van
Leer ones.

Figure 6 – Computed (red symbol) and reference (blue line) solutions for the Euler equation using the Minmod
scheme.

Convection of Species

From now on, we consider the oblique convection of species across a square domain with initial distribution equal to
zero along the bottom and one along the left side. A constant velocity on diagonal direction is prescribed everywhere. The
MFIX (Multiphase Flow with Interphase eXchanges) code (see “Syamlal et al. (1993)”), adaptated with the adaptative
QUICKEST scheme (the Minmod, Superbee, and Van Leer are default methods in MFIX), was run on this problem until
the simulation time of 7.0s, by which the steady state is reached. The calculations with the adaptative QUICKEST were
performed by using Courant number equal to 0.75 and zero. A uniform mesh of 8100 computational cells is used, and,
initially, species mass fraction is set to zero everywhere into the domain. The exact solution for this problem is zero on the
lower triangular region and one on the upper one. Figure 10 shows that the adaptative QUICKEST scheme with Courant
number 0.75 is more diffusive when compare with other schemes. However, in case of Courant number equal to zero it
compare favorably to the other schemes, eventhough the Superbee to be the best.
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Figure 7 – Computed (red symbol) and reference (blue line) solutions for the Euler equation using the Superbee
scheme.

CONCLUSIONS

The main objective of the present study was to contribute for development of the modern high-order boundedness adap-
tative QUICKEST scheme as a new methodology for scalar transport. The numerical results of the adaptative QUICKEST
scheme, for Euler equations and convection of species, show to be in accordance with those obtained with well known
schemes (Minmod, Superbee and Vanleer). A important advantage of the adaptative QUICKEST scheme is the choice of
the Courant number, and this is a way of improving the numerical results.

ACKNOWLEDGMENTS

The first author (V.G. Ferreira) acknowledges the financial support obtained from FAPESP under grant number
2004/16064-9 and from CNPq process number 304201/2005-7.

REFERENCES

Arora, M. and Roe, P.L., 1997, “A well-behaved TVD limiter for high-resolution calculations of unsteady flow”, Journal
of Computational Physics, Vol. 132, pp. 3-11.

Dorthea Y. and Gour-Tsyh Y., 1995, “Computer evaluation of high order numerical schemes to solve advective transport”,
Computers & Fluids, Vol. 24, pp.919-920.

Lax, P.D. and Wendroff, B, 1960, “Systems of conservations laws”, Communications in Pure and Applied Mathematics,
Vol. 13, pp. 217.

Gaskell P. H., Lau A. K., 1988, “Curvature-compensated convective transport: SMART, a new boundedness preserving
transport algorithm”, International Journal for Numerical Methods in Fluids, Vol.8, pp. 617-641.

Harten A., 1984, “On a class of high resolution total-variation-stable finite-difference schemes”, SIAM Journal of Nu-
merical Analysis, Vol. 21, pp. 1-23.

Kaibara, M.K., Ferreira, V.G., Navarro, H.A., Cuminato, J.A., Castelo, A.F. and Tomé M.F., 2005, “Upwind schemes
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Figure 9 – Computed (red symbol) and reference (blue line) solutions for the Euler equation using the adaptative
QUICKEST with CFL 0.34.
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Figure 10 – Step profile calculed by various schemes.


