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Time-domain models for wave propagation in infinite beams
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Abstract: In advanced structural dynamics coupled systemswith bounded nonlinear members on the one side of the
coupling interface and with unbounded linear elastic members on the other side are characterized by wave propagation
and thus radiation damping. In this paper the dynamic stiffness for infinite beams in the frequency-domain is transformed
into the time-domain using a rational approximation and following the mixed-variables formulation. Showing this
process for Euler-Bernoulli’s model and Timoshenko’s shear model indicates significant differences with respect to
analytical and numerical aspects.
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NOMENCLATURE

F̂ = external force amplitude,[N]
M̂ = external moment amplitude,[Nm]
Q = shear force,[N]
w = vertical displacement,[m]
f = force vector
d = deformation vector
K = dynamic stiffness matrix
EI = flexural stiffness,[Nm2]
A = cross-sectional area,[m2]
G = shear modulus,[N/m2]
q = distibuted vertical load,[N/m]
m = distributed moment,[Nm/m]
i = imaginary unit
a = real part of complex number
b = imaginary part of complex number
c = wave propagation speed,[m/s]
r = radius,[m]
x = coordinate,[m]
t = time, [s]
KF = vertical stiffness,[N/m]
KM = rotational stiffness,[Nm]
D = rotational damping coefficient,[Ns]
M = degree of rational approximation
l = number of data points involved in
least-squares procedure
Pj , p j = numerator coefficients of ratio-
nal function, j = 0· · ·M−1

Q j , q j = denominator coefficients of
rational function,j = 1· · ·M
EF = vertical error norm
EM = rotational error norm
v j = internal variables,j = 1· · ·M
s0, s1 = coefficients of linear representa-
tion
r = numerator polynomial of strictly
proper remainder
A, B = matrices of resulting system of
first-order differential equations
z = state variables
r = right-hand side vector
n = integer number related to degree of
fractional differentiation
i0 = initial momentum,[Nms]
h = time step size,[s]
K = stiffness of rotational spring,[Nm]

Greek Symbols
ν = Poisson’s ratio
κ = shear coefficient
φ = angle of rotation
γ = shear angle
ρ = mass density,[kg/m3]
µ = mass per length,[kg/m]

β = distributed stiffness,[N/m2]
λ = square of wave number
ω = excitation frequency,[1/s]
ω̃ = cutoff frequency,[1/s]
∆ω = frequency increment,[1/s]
η = dimensionless frequency (Timo-
shenko beam)
η̃ = dimensionless cutoff frequency
(Timoshenko beam)
θ = dimensionless frequency (Euler-
Bernoulli beam)
α = degree of fractional derivative
τ = time, [s]

Subscripts
T = translational properties
R = rotational properties
Tβ = translation + effect of distributed
stiffness
F = with respect to force
M = with respect to moment

Superscripts
∞ = asymptotic,ω → infinity
(i) = step of successive splitting
procedure,i = 1· · ·M−1

INTRODUCTION

Wave propagation and thus radiation damping plays a keyrolein structural dynamics with infinite members like soil,
fluid, air or a concrete track of railways. In this context, the correct description of radiation damping is still a challenge.
Conventional finite element models cause reflections of outgoing waves at artificial boundaries which have to be prevented
by special measures. Summaries of such absorbing or transmitting boundaries can be found in (Wolf, 1986), (Kausel,
1988) and (Givoli, 1999). A well established method for the analysis of dynamic problems including unbounded media is
the boundary element method (Beskos, 1987; Beskos, 1997). Here, the radiation condition is fulfilled by the fundamental
solution explicitly. However, the numerical evaluation ofthe corresponding dynamic stiffness in the frequency-domain
is a rather troublesome process and the transformation intothe time-domain involving convolution is computationally
expensive. The idea of extending the finite element mesh towards infinity has driven the development of infinite element
techniques (Bettess, 1992). Although this method is well established in acoustics (Harari, 2006), only few applications to
elastodynamic problems can be found in the literature.
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Figure 1 – Infinite Timoshenko beam. Definition of forces and deforma tions

A relatively recent method particularly suitable for the numerical solution of dynamic problems involving unbounded
domains is the scaled boundary finite element method (SBFEM). This procedure has been developed within the last ten
years by Wolf and Song (Song and Wolf, 1997; Wolf, 2003). The SBFEM is based on the use of scaled coordinates which
allow the governing formulations to be discretized in the circumferential directions. The resulting ordinary differential
equations for the dynamic stiffness or displacements with respect to the radial coordinate can then be solved in closed-form
in the frequency-domain.

For infinite beams such ODEs in the space-domain appear a priori, their solution in the frequency-space-domain can
be formulated analytically and the transformation into thetime-domain can be organized without convolution using the
’mixed-variables technique’ developed by Ruge and co-workers (Ruge, Trinks and Witte, 2001). Time-domain formu-
lations should be able to describe the reaction of a structure even for transient excitations like impacts or start-ups and
shut-downs of rotors. These are inputs with a frequency content which tends towards infinity. Consequently, the formula-
tion in the frequency-domain should contain the asymptoticbehaviour forω tending towards infinity. Thus, the dynamic
analysis of infinite beam problems should use such mechanical models which are able to describe vibrations in the high-
frequency range. For this purpose, Timoshenko’s beam theory is more appropriate than Euler-Bernoulli’s model as is
shown in classical textbooks like (Fung, 1986). In addition, the asymptotic behaviour of Timoshenko’s beam turns out
to behave linear with respect to(iω), whereas Euler-Bernoulli’s model shows rational powers like (iω)

1
2 , (iω)

3
2 which

correspond to fractional derivatives in the time-domain. In addition to (Ruge and Birk, 2007), this contribution contains
a comprehensive derivation of the dynamic stiffness matrixof beams bedded on a Winkler foundation. The asymptotic
behaviour is addressed and the mixed-variables technique is summarized. The resulting state equations in the time-domain
are discussed with respect to their numerical solution by local or non-local solvers and finally typical results are presented.

INFINITE TIMOSHENKO BEAM

The dynamic behaviour of an infinite Timoshenko beam as shownin Fig. 1 is described and solved in the frequency-
domain and used in order to formulate the dynamic stiffness relationship,

[

F̂
M̂

]

= K(iω)

[

ŵ
ϕ̂

]

, f̂ = Kd̂, f(t) = f̂ ·eiωt , d(t) = d̂ ·eiωt , (1)

between the deformationsd̂ and the generalized forcesf̂ in the point wheref(t) acts onto the beam. If shear deformations
are included, the slope of the deflection curvew(x) depends not only on the rotationϕ of the beam cross-section but also
on the shear angleγ:

∂
∂x

w(x, t) = −ϕ(x, t)− γ(x, t). (2)

Bending momentM(x, t) and shear forceQ(x, t) are related to the corresponding deformations,

M(x, t) = EI
∂
∂x

ϕ(x, t),

Q(x, t) = −κGAγ = κGA

[

ϕ(x, t)+
∂
∂x

w(x, t)

]

, (3)

whereEI is the flexural stiffness,A the cross-sectional area,G the shear modulus fromE = 2G(1+ ν) with Poisson’s
ratio ν , andκ is the shear coefficient.κ depends on the shape of the cross-section, Poisson’s ratio and the considered
frequency range. For circles, rectangles and thin-walled cross-sections, Cowper (Cowper, 1966) gave several relations.
For high-frequency modes, values published by Mindlin (Mindlin and Deresiewicz, 1953) should be considered. The
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elasticity equations (3) are coupled with the dynamic equilibrium concerning the forces and the moments,

∂
∂x

Q(x, t)+q(x, t)−βw(x, t) = ρA
∂ 2

∂ t2 w(x, t), (4)

∂
∂x

M(x, t)−Q(x, t)+m(x, t) = ρ I
∂ 2

∂ t2 ϕ(x, t), (5)

whereρ [kg/m3] is the mass density per volume,I the moment of inertia about they-axis through the centre of the cross-
section,q(x, t) [N/m] is the prescribed distributed load on the beam,m(x, t) [Nm/m] the prescribed distributed moment
along the beam andβ [N/m2] the distributed stiffness.

The constitutive relations (3) together with the equationsof motion (4), (5) define the governing differential equations
for the displacementsw(x, t) and the rotationϕ(x, t) :

−κGA(ϕ,x +w,xx)+βw+ρAw,tt = q,

κGA(ϕ +w,x)−EIϕ,xx+ρ Iϕ,tt = m. (6)

A wave-type representation
[

w(x, t)
ϕ(x, t)

]

=

[

ŵ
ϕ̂

]

e−x
√

λ+st, s= iω, (7)

solves the homogeneous part of Eqs. (6) yielding a quadraticequation for the rootsλ :

λ 2−λ
STMR+SRMTβ

STSR
+

MTβ (MR+ST)

STSR
= 0. (8)

The new parameters are related to rotational(R) and translational(T) properties.

ST = κGA, MTβ = ρAs2 +β , c2
T = κG

ρ , s= iω,

SR = EI, MR = ρ Is2, c2
R = E

ρ .
(9)

Introducing a dimensionless frequencyη ,

η2 =
ω2

(

β
ρA

) =
ST

β
ω2

c2
T

→ s2 = (iω)2 = −η2c2
T

β
ST

, (10)

simplifies the formulation of the rootsλ1, λ2 of the characteristic equation (8):

λ1,2 =
1
2

β
ST

[

(1−η2)+
c2

T

c2
R

(

−η2±
√

R
)

]

, (11)

R= 4
A
I

ST

β
c2

R

c2
T

(

η2−1
)

+

[

c2
R

c2
T

(

1−η2)+η2
]2

(12)

The special valueη2 = 1 (first cut-off frequency) is related to one zero eigenvalue:

λ1,2 =
1
2

β
ST

c2
T

c2
R

(−1±1) , λ1 = − β
ST

c2
T

c2
R

= − β
EA

, λ2 = 0 (13)

A second situation withλ2 = 0 for taking the plus sign in equation (11) follows from

(

1− η̃2)+
c2

T

c2
R

(

−η̃2 +
√

R
)

!
= 0, (14)

which leads to

4
A
I

ST

β
(

η̃2−1
)

= 4η̃2(

η̃2−1
)

, (15)

and thus

η̃1 = 1, η̃2
2 =

A
I

ST

β
(16)

or

ω̃2
1 =

β
ρA

, ω̃2
2 =

ST

ρ I
=

κGA
ρ I

= c2
T

A
I
. (17)
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The second cut-off frequency,̃ω2, is the same as for an infinite Timoshenko beam without an elastic restraintβ . As the
solution (7) in the space-domain is related to

√
λ , a change of the sign of a real valueλ2 ∈ R influences the character of

the solution significantly. Altogether, the properties ofλ1, λ2 with respect to the cut-off frequenciesω̃1, ω̃2 are as follows:

ω̃1 =

√

β
ρA

, ω̃2 =

√

κGA
ρ I

;



































ω < ω̃1 : λ1,2 = a± ib; a,b∈ R.

ω = ω̃1 : λ1 = − β
EA, λ2 = 0.

ω̃1 < ω < ω̃2 : λ1,λ2 ∈ R; λ1 < 0, λ2 > 0.

ω = ω̃2 : λ1 ∈ R, λ1 < 0, λ2 = 0.

ω > ω̃2 : λ1,λ2 ∈ R; λ1 < 0, λ2 < 0.

(18)

With the help ofλ1,λ2 the normalized deformationwF(r) for a unit forceF̂ = 1[N] at r = 0, r =
√

x2, and the nor-
malized rotationϕM(r) for a unit momentM̂ = 1[Nm] at r = 0 can be described using Hörmander’s theorem (Ḧormander,
1963), elaborated by Antes (Antes, Schanz and Alvermann, 2004):

wF =
1

2ST (λ1−λ2)

[

e−
√

λ1r
√

λ1

(

λ1−
ST +MR

SR

)

− e−
√

λ2r
√

λ2

(

λ2−
ST +MR

SR

)

]

, (19)

ϕM =
1

2SR(λ1−λ2)

[

e−
√

λ1r
√

λ1

(

λ1−
MTβ

ST

)

− e−
√

λ2r
√

λ2

(

λ2−
MTβ

ST

)

]

. (20)

Due toKF = F̂
ŵ andKM = M̂

ϕ̂ at the pointr = 0 whereF̂ andM̂ act onto the beam, the stiffnessesKF , KM follow directly
from the solutions (19) and (20), respectively .

KF =
1

wF(r = 0)
=

2ST (λ1−λ2)
√

λ1λ2
√

λ2

(

λ1− ST+MR
SR

)

−
√

λ1

(

λ2− ST+MR
SR

) , (21)

KM =
1

ϕ(r = 0)
=

2SR(λ1−λ2)
√

λ1λ2
√

λ2

(

λ1−
MTβ
ST

)

−
√

λ1

(

λ2−
MTβ
ST

) , (22)

Below the first critical frequencỹω1 both stiffnessesKF and KM are purely real-valued and indicate properties of a
corresponding frequency-dependent spring. Above the second critical frequencyω̃2 the stiffnesses are purely imaginary
and indicate radiation damping which can be described by a constant damping coefficient whenω tends towards infinity.

lim
ω→∞

KF = K∞
F =

2ST

cT
· iω = 2A

√

κGρ · iω, (23)

lim
ω→∞

KM = K∞
M =

2SR

cR
· iω = 2I

√

Eρ · iω. (24)

For the rotational degree of freedom, the relationship to viscous damping with the corresponding moment,

M(t) = Dϕ̇(t), (25)

in the time-domain follows directly from the assumption of atime-harmonic behaviour of both quantities,ϕ(t) as well as
M(t):

M(t) = M̂ ·eiωt ; ϕ(t) = ϕ̂ ·eiωt . (26)

Thus, Eq. (25) in the time-domain corresponds to

M̂ = iω ·Dϕ̂ (27)

in the frequency domain. Comparing Eqs. (23) and (27) yieldsa constant damping coefficientD = 2I
√

Eρ in case of the
rotational stiffness forω tending towards infinity.

Frequency-to-time transformation

The dynamic stiffnesses given in Eqs. (21) and (22) completely describe the relationship between a point load or
moment, respectively and the resulting deformations atx = 0 in the frequency-domain. However, for the analysis of
transient dynamic problems, a direct time-domain model is desirable. In the preceding section it has been shown that
Eqs. (21) and (22) can be interpreted as simple dampers in thetime-domain for infinitely large excitation frequencies.



P. Ruge, C. Birk

However, in general the stiffness formulations for the Timoshenko beam in the frequency-domain are rather complicated
functions of the frequency:

F̂ = KF(iω)ŵ = K∞
F ŵ+(KF −K∞

F ) ŵ, K∞
F = iω

2ST

cT
; (28)

M̂ = KM(iω)ϕ̂ = K∞
Mϕ̂ +(KM −K∞

M)ϕ̂, K∞
M = iω

2SR

cR
. (29)

Only the asymptotic partsK∞ are simple linear functions with respect to (iω). The so-called low-frequency partsK−K∞

must tend towards zero forω tending towards infinity.

The frequency-to-time transformation of the Eqs. (28-29) is done in steps according to recent publications (Ruge,
Trinks and Witte, 2001; Trinks, 2004)

Step 1 Rational approximation of low-frequency partsK−K∞:

KF −K∞
F =

P0 +(iω)P1 + · · ·+(iω)M−1PM−1

1+(iω)Q1 + · · ·+(iω)MQM
=

P(iω)

Q(iω)
; (30)

KM −K∞
M =

p0 +(iω)p1 + · · ·+(iω)M−1pM−1

1+(iω)q1 + · · ·+(iω)MqM
=

p(iω)

q(iω)
. (31)

The coefficientsPj ,Q j andp j ,q j are found by minimizing the error-normsEF , EM:

EF = ||(KF −K∞
F )−P(iω)/Q(iω)||,

EM = ||(KM −K∞
M)− p(iω)/q(iω)||, (32)

using an amount ofl +1 distinct valuesω j = j∆ω, j = 1, . . . , l with a frequency increment∆ω.

Step 2 Replacement of the fractionp/q by a new state variablev1 and changing from proper fractionp/q to
improper fractionq/p (shown only forKM):

M̂ =

(

iω
2SR

cR

)

ϕ̂ + v̂1,

v̂1 =
p(iω)

q(iω)
ϕ̂ → ϕ̂ =

q(iω)

p(iω)
v̂1.

v̂1 : first internal variable. (33)

Step 3 Splitting ofq/p into a linear part with respect toiω and a strictly proper remainder:

q
p

= s(0)
0 + iωs(0)

1 +
r(0)(iω)

p(iω)
,

r(0)(iω)

p(iω)
: proper fraction, (34)

ϕ̂ = (s(0)
0 + iωs(0)

1 )v̂1 + v̂2, (35)

v̂2 =
r(0)

p
v̂1 → v̂1 =

p

r(0)
v̂2,

p

r(0)
: improper fraction, (36)

v̂2 : second internal variable. (37)

Further steps Continuation of step 3 until the process ends up with a last linear part without an additional fraction.

Finally, a strictly linear representation with respect toiω with M additional internal variables is obtained:

(A+ iωB)ẑ = r̂, (38)

A =

















0 1 0 . . . 0

1 −s(0)
0 −1 . . . 0

0 −1 s(1)
0 . . . 0

...
...

...
...

...

0 0 . . . ∓1 ±s(M−1)
0

















, ẑ =















ϕ̂
v̂1

v̂2
...

v̂M















, r̂ =















M̂
0
0
...
0















, (39)

B = diag

{

2SR

cR
−s(0)

1 s(1)
1 · · · ±s(M−1)

1

}

. (40)



Time-domain models for wave propagation in infinite beams

Assuming a harmonic behaviour of the state variables,

z(t) = ẑ ·eiωt , r(t) = r̂ ·eiωt , (41)

Eq. (38) corresponds to a first-order differential equationwith respect to time:

Az(t)+Bż(t) = r(t). (42)

This ODE can be coupled to additional structural members (even with nonlinear behaviour) and solved in the time-domain
with standard numerical time-stepping schemes.

INFINITE EULER-BERNOULLI BEAM

The governing differential equation, here with an additional elastic Winkler foundationβ [N/m2],

EIw,xxxx(x, t)+βw(x, t)+ρAw,tt(x, t) = 0, (43)

is solved by exponential functionsw(x, t) = ŵeλxeiωt . The dynamic stiffnessesKF andKM are derived in Ruge and Trinks
(2003).

KF = 8EIW3, (44)

KM = 4EIW, (45)

W =
1
2

4

√

β
EI

·
{ √

2 4
√

1−θ 2 for θ 2 ≤ 1
(1+ i) 4

√
θ 2−1 for θ 2 > 1.

, θ 2 = ω2 ρA
β

. (46)

For β → 0 these values change into rational powers of the frequency (Ruge and Trinks, 2004):

KF = 2
√

2EIC
3
4 (iω)

3
2 , (47)

KM = 2
√

2EIC
1
4 (iω)

1
2 , C =

ρA
EI

. (48)

Frequency-to-time transformation

The harmonic behaviour

d(x, t) =

[

w(x, t)
ϕ(x, t)

]

=

[

w(x)
ϕ(x)

]

eiωt ,
∂ α

∂ tα d(x, t) = (iω)α d(x, t), (49)

can be used to turn over from the frequency-domain descriptions (47), (48) for the infinite Euler-Bernoulli beam into the
time domain.

F̂ = KF ŵ, M̂ = KMϕ̂,

F(t) = 2
√

2EIC
3
4

[

−∞D
3
2
t w(t)

]

, (50)

M(t) = 2
√

2EIC
1
4

[

−∞D
1
2
t w(t)

]

. (51)

Here, noninteger powers of(iω) have been interpreted as fractional derivatives of the unknownsz(t). This is based on the
so–called Riemann–Liouville definition (52) of fractionaldifferentiation which can be found in the textbook (Podlubny,
1999), for example.

aDα
t d =

1
Γ(n−α)

dn

dtn

∫ t

a

d(τ)

(t − τ)α+1−n dτ, n−1≤ α ≤ n. (52)

In Eq. (52),n is an integer number. Application of definition (52) using the lower terminala=−∞ to a harmonic function
returns the latter together with a factor(iω)α .

−∞Dα
t exp(iωt) = (iω)α exp(iωt). (53)

However, if the quantitiesd between(t →−∞) andt = 0, where the system starts to exist, are identically zero, then the
lower limit of the integral in Eq. (52) can be replaced by 0.

d(t) ≡ 0 for −∞ < t ≤ 0. (54)

→−∞ Dα
t d =

1
Γ(n−α)

dn

dtn

∫ t

0

d(τ)

(t − τ)α+1−n dτ, n−1≤ α ≤ n.

Thus, the approach presented in this paper is limited to situations with zero initial conditions for the displacements and
rotations. An initial momentumi0 [kgm2s−1] can be modelled by applying a constant moment within a very short time
interval h: i0 = Mh.
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EXAMPLE

In order to illustrate the differences between the Timoshenko and Euler-Bernoulli beam models the specific system
shown in Fig. 2 with the material data given in Eq. (55) has been analysed.

E = 2.1·1011 [

N/m2] , I = 2073
[

cm4] , ν = 0.3, (55)

A = 6948
[

mm2] , µ = ρA = 54.5 [kg/m] , κ =
5
6
.

Here, the distributed stiffness is replaced by a single rotational spring of stiffnessK = 1.6·107Nmatx= 0. The rotational

..................................................
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..........
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ϕ ,γ

Figure 2 – Infinite beam supported by a single spring at x = 0.

dynamic stiffness derived for the Timoshenko and Euler-Bernoulli beam in Eqs. (22) and (48), respectively is shown
in Fig. 3. As described above, the real part of the dynamic stiffness of the Timoshenko beam vanishes for excitation
frequencies bigger thañω2 with:

ω̃ =

√

κGA
ρ I

= 53607.8
1
s
.

This is not the case for the Euler-Bernoulli beam. The real and imaginary part of the latter are identical. The rotational
dynamic stiffnesses corresponding to the two different beam models agree reasonably only for small frequencies, approx-
imatelyω < 100001

s. However, the stiffness curves differ strongly for large excitation frequencies. The linear asymptote
of the imaginary part of the Timoshenko beam is also shown in Fig. 3. It can be seen, that Eq. (22) approaches the latter,
whereas both the imaginary and real part ofKM corresponding to the Euler-Bernoulli model follow a square-root function
of ω.

In order to obtain a time-domain model, the low-frequency part of the rotational dynamic stiffness of the Timoshenko
beam is approximated by the ratio of two polynomials (Eq. (31)) as described above. The agreement between the exact
low-frequency vertical dynamic stiffness coefficient and rational approximations of degreeM = 5 andM = 9 is shown
in Fig. 4. Using the rational stiffness approximation, the rotation at the point of excitation of the coupled beam-spring
system shown in Fig. 2 is described by the following system offirst-order differential equations:

Ãz(t)+Bż(t) = r(t), (56)

with

Ã = tridiag





1 −1 . . . ∓1 ∗
K −s(0)

0 s(1)
0 . . . ±s(M−1)

0
∗ 1 −1 . . . ∓1



 . (57)

Here, the rotational spring stiffnessK has been included at the position (1,1) of the matrixÃ. The vector of unknownsz,
right-hand side vectorr and the matrixB are identical to that given in Eqs. (39) and (40), respectively. Using Eq. (56),
the rotationϕ(x = 0, t) due to a transient unit-impulse momentum,

i0 =
∫ h

0
M(t)dt = 1.0 [Nm·s] , (58)

acting within the time-intervall 0≤ t ≤ h has been computed. The numerical results corresponding to different degrees
of rational approximation are shown in Fig. 5. Although there is no analytical solution available, it can be seen, that the
numerical solutions are approaching each other for increasing degree of approximationM.

According to the preceding section, Eq. (51), the coupled Euler-Bernoulli beam-spring system is described by the
following fractional differential equation in the time-domain:

K ·ϕ(t)+2
√

2EIC
1
4

[

−∞D
1
2 ϕ(t)

]

= M(t), C =
ρA
EI

. (59)

Eq. (59) has also been solved numerically for a harmonic excitation,

M(t) = M̂ cosΩt, M̂ = 1.0·106Nm, Ω = 20000
1
s
, (60)
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using a specific time-stepping scheme developed for fractional differential equations (Trinks, 2004; Ruge and Wagner,
1999). The resulting rotationϕ(x = 0, t) at the point of excitation of the Euler-Bernoulli beam is compared to that
of the Timoshenko beam in Fig. 6. It can be seen that the Euler-Bernoulli model leads to smaller rotations in this
specific situation. Moreover, a phase shift is visible in Fig. 6. However, the numerically obtained displacement curves
corresponding to the two different beam models are similar,despite the big differences with respect to the dynamic
stiffness.

CONCLUSIONS

Effects from shear deformations are well-known in structural statics. However, even if they are not significant from a
mechanical point of view, they can improve the performance of the discretization scheme as is known from mixed methods
in finite-element concepts in statics (Zienkiewicz and Taylor, 1994).

In structural dynamics of infinite domains the benefit from using Timoshenko’s model is even greater: including the
asymptotic behaviour in the formulation in the frequency-domain shows a linear dependency with respect toiω and thus
corresponds to a first-order time-derivative. Consequently, the solution in the time-domain can be done by classical time-
solvers with local properties. Contrary to shear models, Euler-Bernoulli’s theory generates rational powers ofiω in the
frequency-domain and therefore fractional derivatives inthe time-domain which ask for non-local time-solvers.
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