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Abstract: This work presents the comparison between techniques applied to parameter identification of an aircraft
accounting for process and measurement noise based on the following methods: Output error approach and Filtering
approaches. The Output error approach, which can account only for measurement noise, uses the iterative Levenberg
Marquardt optimization method to estimate the unknown parameters by minimization of a likelihood cost function. In
the filtering approaches, accounting for both process and measurement noise, two different methods are considered. In
the first, the unknown parameters can be estimated as augmented states using the Extended Kalman Filter. The second
concerns Filter Error methods which are similar to the Output Error method and the filter is used only for the natural
purpose of obtaining the true state variables from the noisy measurements, i.e., for state estimation. Simulated data is
used to evaluate the methods performance.
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NOMENCLATURE

u = longitudinal component of velocity,
m/s
α = angle of attack, rad
q = pitch angular velocity, rad/s
θ = pitch angle, rad
az = vertical acceleration, g
δe = elevator deflection, rad

G = process noise intensity matrix
F = measurement noise intensity matrix
P = covariance matrix
K = Kalman gain matrix
J = Cost function

Subscripts
ω = relative to process noise
ν = relative measurement noise
k = relative to sample
a = relative to system augmentation
c = relative to change in vector or ma-
trix due to small change in the system
parameters

INTRODUCTION

One of the most important phases of the design and evaluation process in the aeronautical design nowadays concerns
modeling and simulation. In order to accomplish this task, the system identification and parameter estimation consti-
tutes a fundamental step. System Identification is a general procedure to match the observed input-output response of a
dynamic system by a proper choice of an input-output model and its physical parameters. From this point of view, the
aircraft system identification or inverse modelling comprises proper choice of aerodynamic models, the development of
parameter estimation techniques by optimization of the mismatch error between predicted and real aircraft response and
the development of proper tools for integration of the equations of motion within the system simulation and correlated
activities. The techniques analyzed in this work can be subdivided in the following way:

• Output Error Method (OEM): method which minimizes the error between the values of output variables predicted
by a given model, and the values of these variables measured in the real system. Output error methods do not work
properly with process noise;

• Extended Kalman Filter (EKF): the parameters are defined as additional state variables and then a nonlinear filter
is used to estimate the augmented state vector;

• Filter Error Method (FEM): similar to the Output Error Method, the parameters are estimated by minimization of a
cost function involving the output variables error. In this case, a filter is implemented to estimate the state variables
and then, process and measurement noise can be taken into account.

The application of methods that take into account measurement noise only, which is the case of the Output Error
analyzed in this work, to extract the aerodynamic coefficients from flight test data have been successfully used in the liter-
ature. However, the application of algorithms based on stochastic filtering, that can handle both measurement and process
noise, are becoming necessary, because then it is possible to analyze flight test data obtained in turbulent atmosphere or
even improve the estimation results compared to the traditional methods.
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Thus, three different estimation algorithms that enable parameter estimation are critically evaluated from a viewpoint
of computation complexity and time, convergence properties, parameter estimates, and their accuracies. These algorithms
are applied to systems with additive process and measurement noise.

This work is structured as follows: first, we present the equations of the dynamic model, which represents the linear
longitudinal equations of an aircraft motion with the parameters to be estimated and the covariance matrices of the process
and measurement noise. In the sequence, the algorithms for parameter estimation are outlined in the following order:
Output Error Method, Extended Kalman Filter and Filter Error Method. Then , the results are presented with the analysis
and comparison of the algorithms and the concluding remarks.

DYNAMIC MODEL OF LONGITUDINAL MOTION

The aircraft dynamic system is described by a stochastic linear model. In this section the inverse problem formulation
is applied to the longitudinal movement of the aircraft, for which the linear state and output equations can be written as,

State equations: 


u̇
α̇
q̇
θ̇


 =




Xu Xα Xq −g
Zu/U0 Zα/U0 1 0

Mu Mα Mq 0
0 0 1 0


 .
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 .δe+G.ω(t) (1)

Observation equations:
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The intensity matrices of the process and measurement noise are given by,

G =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 e F =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




(3)

The process noise,ω(k), and the measurement noise,ν(k) are defined as Gaussian white noise such that,

E[ω(k)] = 0, E[ν(k)] = 0, E[ω(k)ω( j)T ] = Pω δ (k− j), E[ν(k)ν( j)T ] = Pν δ (k− j),
E[x(k)ω( j)T ] = 0, E[ν(k)ω( j)T ] = 0, E[x(k)ν( j)T ] = 0.

(4)

where the covariance matrices are given by

Pω =




0.05 0 0 0
0 1.5e−2 0 0
0 0 1.5e−2 0
0 0 0 1.5e−2


 e Pν =




0.25 0 0 0 0
0 7.61e−5 0 0 0
0 0 1.22e−5 0 0
0 0 0 7.61e−5 0
0 0 0 0 0.01




(5)

The parameter vectorΘ to be estimated is defined as

Θ =
[
Xu Xα Xq Zu Zα Mu Mα Mq Xδe Zδe Mδe

]T
(6)

OUTPUT ERROR METHOD

In this section, the parametric identification, in particular the parameter estimation applied to a linear causal model of
an aircraft, in space state formulation according to eq. (1) and (2) is considered. The Output Error Method is one of the
most used estimation methods in aircraft identification and aerodynamic parameter estimation. It has several desirable
statistical properties, including its application to nonlinear dynamical systems and the proper accounting of measurements
noise.

The structure of the model is considered to be known, and the identification process consists in determining the pa-
rameter vectorΘ, which gives the best prediction of the output signalz(t), using some sort of optimization criteria. The
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attainment of an estimate through optimization of a cost function based on the prediction error of the plant requires, usu-
ally, the minimization of a nonlinear functional. Thus, the Levenberg-Marquardt method is used here as the optimization
algorithm.

The cost function to be minimized involves the prediction error,

e(k,Θ̂) = z(k)−y(k,Θ̂) (7)

wherey(k,Θ̂) is the output prediction based on the actual estimateΘ̂ of the parameter vectorΘ.

First we define the Likelihood Functional,p(z|Θ), as the probability Gaussian density function of the variabley for a
given parameter vectorΘ, with meanf (Θ) and covarianceRT ,

p(z|Θ) =
1

(2π)m/2|RT |n/2
.exp

{
−1

2

n

∑
k=1

[z(k)−y(k)]T [RT ]−1[z(k)−y(k)]

}
(8)

The Maximum Likelihood Estimate (MLE) is the value ofΘ that maximizes this functional,

Θ̂ = Arg
Θ∈DM

Max p(z|Θ) (9)

Then we define the cost function as:

J =
1
2

N

∑
k=1

[z(k)−y(k)]T R−1 [z(k)−y(k)]+
N
2

ln |R| (10)

In the case whereR is unknown, equating∂J/∂R to zero gives the maximum likelihood estimate ofR:

R̂=
1
N

N

∑
k=1

[z(k)−y(k)] [z(k)−y(k)]T (11)

Minimizing J(Θ) is maximizingp(y|Θ), becauseJ(Θ) is equivalent to−ln p(y|Θ) except for a constant term.

The optimization necessary condition is obtained when

∇ΘJ(Θ) = 0 (12)

Taylor series expansion about the k-th value provides

[∇ΘJ(Θ)]i+1
∼= [∇ΘJ(Θ)]i +[∇2

ΘJ(Θ)]i .(Θi+1−Θi) = 0 (13)

which can be used to find the minima of the original cost function through the recursion,

Θi+1 = Θi +[∇2
ΘJ(Θ)]−1

i [∇ΘJ(Θ)]Ti (14)

The complexity in the calculation of the Hessian matrix,∇2
ΘJ(Θ) in (14), is avoided through the Gauss-Newton

method, which uses the approximations,

∇ΘJ(Θ) =
N

∑
k=1

[
∂y
∂Θ

(k)
]T

R−1 [z(k)−y(k)] (15)

∇2
ΘJ(Θ) =

N

∑
k=1

[
∂y
∂Θ

(k)
]T

R−1
[

∂y
∂Θ

(k)
]

(16)

The gradient of the estimated output,∂y
∂Θ (k), is calledSensibility Functionand can be obtained analytically for a

linear system by partial differentiation of its equations. A better approach is to approximate this differentiation by finite
differences. In this procedure, the parametersΘ are perturbed one at a time and the corresponding perturbed model
responseyc is computed. The sensitivity coefficient is then given by,

∂y
∂Θ j

=
(yc−y)

∆Θ j
(17)
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The Levenberg-Marquardt algorithm is an extension of the Gauss-Newton. The idea is to modify eq. (16) to

∇2
ΘJ(Θ)≈

N

∑
k=1

[
∂y
∂Θ

(k)
]T

R−1
[

∂y
∂Θ

(k)
]
+ λ I (18)

and the inversion of the Hessian in (14) is not performed in an explicit manner, i.e., typically the original equation

[
∇2

ΘJ(Θ)+λ I
]

∆Θ̂ = ∇T
Θ
J(Θi) (19)

is solved via Singular Value Decomposition (SVD).

The inclusion ofλ I in (19) solves the problem of an ill conditioned approximated Hessian. The Levenberg-Marquardt
algorithm can be interpreted in the following way: for small values ofλ it behaves like the Gauss-Newton algorithm,
while for high values ofλ it behaves like the gradient method.

FILTERING APPROACH (EXTENDED KALMAN FILTER)

The Extended Kalman Filter is a sub-optimal solution for the nonlinear filtering problem. The nonlinear functionsf
andg are linearized in each new estimated/filtered state. The simultaneous estimation of states and parameters is obtained
by augmenting the state vector with unknown parameters (as additional states) and by using the filtering algorithm with
the nonlinear augmented model.

By considering the constant vector parametersΘ as the outputs of an auxiliar dynamic system,

Θ̇ = 0 (20)

and by defining the augmented state vector
xT

a =
[

xT ΘT
]

(21)

the augmented system can be represented by

xT
a (t) = fa [xa(t),u(t)]+Gaωa(t)

=
[

f [x(t),u(t),Θ]
0

]
+

[
G
0

]
ω(t)

y(t) = ga [xa(t),u(t)]

z(k) = y(k)+F.υ(k) , k = 1, · · · ,N

(22)

In this model, F is supposed to be the identity matrix.

The estimation algorithm is obtained linearizing the equations at the current state estimate, at each time step and
applying the Kalman Filter algorithm to the linearized model. The linearized matrices of the system are given by

A(k) =
∂ fa
∂xa

∣∣∣∣
xa=x̂a(k), u=u(k)

(23)

C(k) =
∂ga

∂xa

∣∣∣∣
xa=x̂a(k), u=u(k)

(24)

and the state transition matrix is calculated as

φ(k) = exp[−A(k)∆t] (25)

The filtering algorithm is divided in two parts: (i) time propagation, and (ii) measurement update.

Time propagation:

The current estimate is used to predict the next state, in such a way that the states are propagated from the current state
to the next time instant. The predicted state is given by

x̃a(k+1) = x̂a(k)+

tk+1∫

tk

fa[x̂a(t),u(t), t]dt (26)
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In the absence of knowledge about the process noise, eq. (26) gives the state prediction based on the initial/current
estimate. The covariance matrix of the state estimation error propagates from instantk to k+1 as

P̃(k+1) = φ(k)P̂(k)φT(k)+Ga(k)QGT
a (k) (27)

Where,P̃(k+ 1) is the covariance matriz prediction for instantk+ 1, Ga is the coefficient matrix related to the process
noise, andQ is the covariance matrix of the measurement noise.

Measurement update:

The Extended Kalman Filter updates the state estimates incorporating the measurements in the following way:

x̂a(k+1) = x̃a(k+1)+K(k+1){zm(k+1)−ga[x̃a(k+1),u(k+1), t]} (28)

where,K is the Kalman matrix gain.

The covariance matrix is updated using the Kalman gain, the linearized measurement matrix and the predicted covari-
ance matrixP̃(k+1).

The Kalman gain matrix is given by

K(k+1) = P̃(k+1)CT(k+1)[C(k+1)P̃(k+1)CT(k+1)+R]−1 (29)

The expression for the a posteriori covariance matrix is given by

P̂(k+1) = [I −K(k+1)C(k+1)]P̃(k+1) (30)

FILTER ERROR METHOD

The Filter Error Method is the most general approach for parametric estimation taking into account process and
measurement noise. In this approach, like the OEM, we also define a cost function to be minimized with respect to
the parameter vector using a convenient optimization algorithm. The Levenberg-Marquardt method is used here. The
stochastic filtering is used with the only purpose of estimating the state variables,x, through the filtering of the noisy
measurements,z.

Among the algorithms presented in this article, the Filter Error with time varying filter is the most complex to imple-
ment. In contrast to the stationary filter, he matricesS, K andP are no longer constants and have to be calculated at each
sampling timek. Similarly, the matricesA andC obtained through first order linearization of the system equations are
calculated at each iteration.

The time varying method, is formulated in the following way. The cost function to be minimized is given by

J =
1
2

N

∑
k=1

[z(k)−y(k)]TS−1(k)[z(k)−y(k)]+
N

∑
k=1

1
2

ln |S(k)| (31)

where the covariance innovations matrixS is updated at each sampling pointk.

The steps for time propagation (prediction) and correction used to obtain the updated values of states,x̂, and the state
error covariance matrix̂P are given below.

Time propagation:

x̃(k) = x̂(k−1)+
tk∫

tk−1

f [x(t),ue(k),Θ]dt

ỹ(k) = g[x̃(k),u(k),Θ]
(32)

Assuming that∆t is small, the predicted matrixP can be approximated by

P̃(k)≈ΦP̂(k−1)ΦT +∆tGGT (33)

Correction:
K(k) = P̃(k)CT(k)[C(k)P̃(k)CT(k)+R]−1 (34)

x̂(k) = x̃(k)+K(k)[z(k)− ỹ(k)] (35)

P̂(k) = [I −K(k)C(k)]P̃(k)
= [I −K(k)C(k)]P̃(k)[I −K(k)C(k)]T +K(k)RKT(k) (36)



Comparison of Algorithms for Parameter Estimation

The equation for̂P in eq. (36) with quadratic form is usually preferred, since it is numerically stable converges faster.

Once the filtered states are obtained, the estimates of the parameters are given by

Θi+1 = Θi +[∇2
ΘJ(Θ)]−1

i [∇ΘJ(Θ)]Ti (37)

∇ΘJ(Θ) =
N

∑
k=1

[
∂y
∂Θ

(k)
]T

S−1(k) [z(k)−y(k)] (38)

∇2
ΘJ(Θ) =

N

∑
k=1

[
∂y
∂Θ

(k)
]T

S−1(k)
[

∂y
∂Θ

(k)
]

(39)

As in the case of OEM, the gradient∂y/∂Θ can be obtained by the introduction of small perturbations in each of the
system parameters one at a time. The change in the response of the system due to this small perturbation can be obtained
by the following equations:

x̃c(k) = x̂c(k+1)+
tk∫

tk−1

f [xc(t),ue(k),Θ+∆Θ] dt

yc(k) = g[x̃c(k),u(k),Θ+∆Θ]

x̂c(k) = x̃c(k)+Kc[z(k)−yc(k)]

(40)

where the subscriptsc represent the change in vector or matrix due to small perturbations in the parameters. Note that the
computation of the change in the state variable needs the perturbed Kalman gain matrixKc, which can be obtained from

Kc = PcC
T
c S−1 (41)

The state error covariance matrixPc, necessary for the computation ofKc in eq. (41), can be obtained from eq. (33).

Once the perturbed system responseyc is obtained using the set of equations above, the gradient∂y/∂Θ can be
easily obtained. Assuming thatyci represents the change i the n-th component of the output vectory corresponding to a
perturbation in parameterΘ j , the gradient is given by

(
∂y(k)
∂Θ

)
i j
≈ yci (k)−yi(k)

∆Θ j

f or i = 1, ...,m and j= 1, ...,q
(42)

whereq represents the dimension of the parameterΘ.

In the time varying approach the matrixS is calculated directly from eq. (34):

S(k) = C(k)P̃(k)CT(k)+R (43)

To calculateS(k) from eq. (43) it is necessary the value of noise measurement covariance matrixR, which can be
estimated by using Fourier smoothing. In this approach, Fourier series analysis is used to smooth the measured data and
separate out the clean signal from noise based on spectral content.

RESULTS

By running a simulation of 30s with sampling time of 0.05s, 600 data samples of input and output signals are obtained,
for which the algorithms are applied. The same initial estimate of the parameters are used for all runs, which corresponds
to 30 % of the nominal values.

Table 1 presents the results of estimation of the parameters and the estimate of the relative standard deviation, calcu-
lated from the Fischer Information matrix. We also compare the final value of the cost function achieved, the number of
iterations and the computer time required by each method.

According to the results achieved, it can be observed that some parameters estimates by Output Error Method are
biased, as was expected, due to the process noise present in the data.

The Extended Kalman Filter algorithm presents estimates of the parameters that are close to the nominal value. As a
recursive parameter estimation algorithm, all data points are processed together at a time, yielding parameters representing
average system behavior. The computer memory requirements for this method are small, because storage of past data is not
required. In Table 1 it cab be observed the computer time spent by the algorithm, which is only 6.93 s. The disadvantage
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of the method is the requirement of a fine tuning of the covariance matrices. In this particular case, the estimates are close
to nominal because noise characteristics are known.

The best estimates are achieved by the Filter Error Method, which combines the advantages of the non-recursive
estimation methods and the stochastic filtering of the states. From the values of parameters estimates, relative standard
deviation and number of iterations, its improved convergence can be observed. The disadvantage of the method is the
computational complexity, which can be seen from the computer time spent by the algorithm. The figures 1 and 2 present
the evolution of the parameter estimate by the number of iterations for the Filter error method. The plots in figure 3
demonstrate the prediction capacity of the method showing the measured variables and their prediction with the estimated
parameters.

Table 1 – Comparison of parameter estimation.

Parameters Nominal OEM EKF FEM
Xu -0.0091 0.0151 (16.20) -0.088 (17.15) -0.080 (6.26)
Xα 9.43 18.8525 (8.78) 7.0608 (94.04) 8.1864 (2.20)
Xq 0 12.3708 (14.70) -0.3603 (623) -0.6321 (5.62)
Zu -0.088 -0.084 (2.79) -0.088 (3.78) -0.088 (0.41)
Zα -34.68 -35.392 (0.89) -34.216 (1.05) -34.364 (0.29)
Mu 0 0.0003 (78.78) -0.0001 (93.08) -0.0003 (4.94)
Mα -3.49 -3.6061 (0.99) -3.2727 (1.11) -3.3323 (0.28)
Mq -2.04 -1.8644 (2.53) -1.8446 (2.91) -1.7208 (0.60)
Xδe 0 25.5723 (11.71) -2.9457 (539.90) -1.8619 (6.51)
Zδe -0.11 -0.1298 (6.06) -0.0977 (8.88) -0.1039 (3.08)
Mδe -5.09 -5.0205 (1.49) -4.8050 (1.78) -4.7196 (0.34)

Cost function - 5.8450e-14 5.68e-15 2.47e-15
Iterations - 7 1 5
Time [s] - 18.18 6.93 69.49

CONCLUDING REMARKS

Three algorithms for parameter estimation were applied to simulated flight data with process and measurement noise.
Despite its successful use along the years, the Output Error Method does not show good convergence properties due the
process noise in the data. Some estimates are inconsistent and biased compared to the expected values.

In the case of the Extended Kalman Filter, to be able to use this approach for systems with unknown noise statistics, it
is necessary to extend the filtering algorithm to include simultaneous estimation of noise covariances, often referred to in
the literature as “adaptive filtering”.

The performance of the Filter Error algorithm was the best among the methods considered here. Despite of its com-
plexity, the algorithm showed good convergence properties and is the most adequate for parameter estimation for systems
with process and measurement noise.
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Figure 1 – Evoluo da estimativa dos parmetros.



Benedito C. O. Maciel, Luiz C. S. Góes, Elder M. Hemerly
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Figure 2 – Evoluo da estimativa dos parmetros.
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Figure 3 – Fitting of the output values measured and predicted by the Filter error method.


