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Abstract: This work deals with modeling, implementation and testing of an axisymmetric finite element formulation 
that represents the mechanical behavior of fibrous laminated composite tubes under internal/external pressure and 
other general symmetrical loadings. The model discretization is attained to the tube generating rectangular section by 
using a quadrilateral four node element mesh, with three displacement degrees-of-freedom per node represented in a 
cylindrical coordinate system attached to tube axis. Composite laminated layers are assumed perfectly bonded 
together, assuring material continuity between the layers on the displacement fields. Orthotropic and/or transverse 
isotropic constitutive material laws have been implemented, allowing for displacement, strain and stress numerical 
solutions. In the element model validation, results from the present finite element model are compared with those from 
analytical solutions available in the literature as well as from the use of layered solid element model available in a 
commercial finite element program. Two sample examples of a two-layer composite [-45°/+45°] material were 
considered for model testing compared to theoretical and numerical solutions. Good numerical convergence in the 
solutions presented, which represent the main characteristics for this class of problems, is noted.   
Keywords: composite materials, laminate structure, finite element model, axisymmetric formulation   

NOMENCLATURE 
hi= Lagrange interpolation function, 

referred to node i 
r,s = element local coordinates  
        (-1 ≤ r,s ≤ +1 )  
ri  = radial coordinate, at node i 
ui = axial displacement, at node i 
vi  = circumferential displacement, at 

node i 
wi = radial displacement, at node i 
xi = axial coordinate, at node i 
B(r,s) = element strain-displacement 

matrix 
C = constitutive matrix, referred to 

global coordinate X-θ-R system 

C = constitutive matrix, referred to 
local coordinate 1-2-3 system 

E = modulus of elasticity 
G = shear modulus  

J = element Jacobian matrix 
K = element stiffness matrix 

1M = stress transformation matrix, 
from local to the global 
coordinate system   

2M = strain transformation matrix, 
from local to the global 
coordinate system   

R = global radial coordinate 
U = global axial displacement 
V = global circumferential 

displacement  
W = global radial displacement 
X = global axial coordinate 
 

Greek Symbols 
ε = linear strain component 

ε  = strain component vector, in 
global coordinate X-θ-R system 

ε = strain component vector, in 
      local coordinate 1-2-3 system  
σ = stress component vector, in 

global coordinate X-θ-R system 
σ = stress component vector, in 

local coordinate 1-2-3 system  
γ = shear strain component 
υ  = Poisson�s ratio 

Subscripts 

ii,jj,ij = relative to material local axis 
xx, θθ, RR, etc = relative to plane and 

directions of strains and stresses  

INTRODUCTION  
Circular cylindrical tubes are widely used in engineering practice, especially in chemical, offshore and infrastructure 

applications. They are also present in living organisms, with a diversity of applications in carrying fluids such in blood 
vessels or elephant trunks. Today, fibrous composites are fabricated to meet piping specifications which can be 
fabricated by various methods such filament winding and pultrusion.   Material selection, fiber orientations, and layer 
thickness are some of the engineering parameters for an optimized piping design. As examples, tubular configuration 
structures in living organisms are invariably laminated to meet their needs for a specific use, while piping hybrid 
composite structures are employed in special applications such oil drilling operations and in aerospace industries. These 
piping structures have as major advantage the combination of low weight with high mechanical strength and are 
obtained by layer superposition of composite materials, forming a laminate. These combined laminae results in an 
orthotropic structure with some very useful mechanical properties, improving axial, torsion and global bending stiffness 
throughout axial-torsion kinematics couplings.  
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Analytical solutions for composite tubes are only available for the linear elastic material behavior, under special 
types of loading and boundary conditions. They are based, for example, upon the works of Lekhnitskii(1950), 
Scherrer(1967), Pagano(1971), Reissner and Tsai(1974), Wilson and Orgill(1986), assuming perfectly bounded layers. 
In practice these types of structures are subjected to internal/external pressure, longitudinal traction or compression and 
torsion. However, the solutions reported in these works refer to a long pipe with a number of layers and material 
constitutive parameters, under internal pressure only. Displacement, strains and stress fields along the thickness of the 
pipe are the obtained solutions provided. Orthotropic and transverse isotropic constitutive relations are used in the 
material characterization and displacement continuity conditions are granted throughout the pipe layers. 

In this paper a finite element formulation is presented towards the representation of composite cylindrical tubes. It 
employs a four-node isoparametric finite element formulation, with three displacements per node defined in the axial, 
circumferential and radial directions of the cylinder. Material isotropy, transverse isotropy and orthotropy are allowed, 
under static analysis, considering internal/external pressure, axial and torsion loadings, all varying along the pipe length. 
The formulation equations are set based in linear theory of elasticity relations, under the axisymmetry geometric 
condition.  

In the next section, the formulation is presented so that the element is applicable to the modeling of composite pipes. 
The appropriate discretized equations for constitutive, geometric compatibility and equilibrium conditions, imposed to 
each layer, are derived. The element formulation has been implemented and some sample analysis results are presented 
and compared with numerical solutions obtained from other commercial finite element software. 

   

Element Kinematics and F E Formulation 
Considering a circular tube composed by anisotropic layers, the finite element representation consists on discretizing 

the displacements in each layer using the appropriate cylindrical coordinate referred to its axis of symmetry. The 
problem axisymmetry - geometry and loading - results in spatial displacements varying in radial an axial direction, only. 
Thus, two-dimension elements are used in the numerical representation of the cylinder, representing its rectangular 
generatrix section. The four-node element, with Lagrange interpolation functions, is employed for geometry and 
kinematics representation, as shown in Fig. 1. Thus, geometric coordinates are defined as  

                                                      X(r,s) = ∑
=

4

1i
hi(r,s) xi   ,  R(r,s) = ∑

=

4

1i
hi(r,s)  ri                                                                              (1) 

and for the displacements we have 

                     U(r,s) = ∑
=

4

1i
hi(r,s) ui    ,   V(r,s) =  ∑

=

4

1i
hi(r,s) vi    and   W(r,s) = ∑

=

4

1i
hi(r,s) wi .                      (2) 

 

 
 Figure 1 – Element Nodal Displacements and Interpolation Functions Used  
Combining these two sets of equations the displacement fields can be written with respect to geometric global 
coordinates X and R, such that U(X,R), V(X,R) and W(X,R) are stated. From these, the element strains are evaluated in 
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the element cylindrical coordinate system, referrer to the global X-θ-R axis, as shown in Fung (1965). Thus, the 
following strain components are obtained  

εXX = ∂U/∂X ,     εθθ = W/R ,      εRR =  ∂W/∂R         and 

                                     γXθ =  ∂V/∂X         γXR = ∂U/∂R + ∂W/∂X            γΘr = ∂V/∂R � V/R                               (3) 

which, after discretization eqs. (1) and (2) being considered, result in a twelve degree-of-freedom finite element, with 
the following displacement vector associated to each element , 

                                 UT =  [ u1   v1   w1   u2   v2   w2   u3   v3   w3   u4  v4  w4 ]  .                                     (4) 

In eqs. (3) nodal displacement differentiation is taken using   

                                                                            ∂/∂X =  J-1  ∂/∂r ,                                                                              (5) 

where  

                                                                J = 







∂∂∂∂
∂∂∂∂
sRsX
rRrX

//
//

                                                                            (6)   

is the element Jacobian matrix, obtained from coordinate definitions set in eq. (1), and                                                                          
                                           ∂/∂XT =  [ ∂/∂X  ∂/∂R ]    and    ∂/∂rT =  [ ∂/∂r  ∂/∂s ] .                                                     (7) 

Thus, combining equations (3) to (7), the element strain vector relates to nodal point displacements, in matrix form, as  

                                                                             ε  =  B(r,s) U                                                                                (8) 

with the following matrix elements definitions, for i= 0,1, 2 and 3,  

 B1,1+3i (r,s) =  J 1
11
−  hi,r + J 1

12
−  hi,s , 

                                                                        B2,3+3i (r,s) =  hi/R  , 

                                                                        B3,3+3i (r,s) =  J 1
21
− hi,r + J 1

22
− hi,s  , 

                                                                        B4,2+3i (r,s) = J 1
11
− hi,r  + J 1

12
− hi,s   ,                                                                                       (9) 

B5,1+3i (r,s) = J 1
21
− hi,r + J 1

22
− hi,s  , 

     B5,3+3i (r,s) = J 1
11
− hi,r +  J 1

12
− hi,s  ,  

         B6,2+3i (r,s) = J 1
21
− hi,r +  J 1

22
− hi,s − hi/R 

and all others equal to zero.  

       Model constants for the composite material are generally defined using fiber directions as coordinate axis of 
reference, in which no couplings between normal and shear stress components occur. Setting these as 1-2-3 directions, 
shown in Fig. 2, the element constitutive relation, for orthotropic materials, becomes 

                                                                                   σ = C ε                                                                                (10) 

with,                             
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  .                         (11) 

In eq.(11) Eii�s are the Young�s modulus in each local direction, Gij�s  and υ ij�s  � for i≠j � are the material shear 
modulus and Poisson�s ratio, respectively, while   

                                                                           υ ij = ( iiE / jjE ) jiυ ,                                                                      (12) 

as required from symmetry.  Also, in this work, direction-1 has been set as the fibers direction in the composite and the 
material considered as transversally isotropic, what gives 
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                                           22E = 33E , 12υ = 13υ , 12G = 13G  and 23G = 22E /2(1+ 23υ ).                                       (13)  

  

 
Figure  2 – Local Coordinates for The Composite Material Fibers  

Thus, the number of required parameters for the constitutive relation matrix C  reduces to the following five constants: 

11E , 22E , 12G , 12υ , 13υ . Using the appropriate coordinate transformations to the global coordinate system X-θ-R , 
stress and strain vectors are defined, respectively, as 

                                                                         σ  = 1M  σ                                                                                     (14) 

                                                                and   ε   = 2M ε                                                                                       (15)   

with 
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where m ≡ cos φ  and  n ≡ sin φ definitions are employed, as shown in Lardner and Archer(1994).  

Substituting eqs. (14) and (15) into eq. (10), the element constitutive relation, referred to the global coordinate system, 
results in  

                                                                              σ  =  C ε                                                                                    (17)                            

with C = 1
1
−M C 2M . 

      Using the principle of virtual work (or principle of minimum total potential energy) to derive the equilibrium 
equations for the linear response of the element we obtain, as in Bathe(1996), 

                                                                                 K U = R                                                                                     (18) 

where K is the stiffness matrix of the finite element corresponding to the element nodal point degrees-of-freedom listed 
in U,  

                                                                         K = ∫
V

BT C B  dV                                                                            (19) 
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and R is the effective nodal point load vector.  

 

Sample Analyses 
       The element formulation has been implemented and the numerical solutions of the following two analyses indicate 
its applicability and effectiveness. In both examples a two-layer composite cylinder under internal pressure is 
considered having [+45°/-45°] winding orientations, with respect to the longitudinal axis of the cylinder. The two 
analyses differ on the boundary conditions employed, for which this type of structure arrangement is very sensitive, as 
shown in the examples. In both cases a 30in. internal diameter, 6in. thick and 1in. long cylinder was considered, under a 
10 psi. internal pressure. The cylinder composite � transversally isotropic � material used has the following 
characteristic constants: 11E = 19,2x106 psi, 22E = 1,56x106 psi, 12G = 0,82x106 psi, 12υ = 0,24 and 23υ = 0,49.    

Case 1 � Comparison to Analytical Solutions 

        In this case the numerical analysis results are compared with the analytical solutions obtained by Herakovich 
(1998). A model of eight equally spaced elements, in the radial direction, was used, according to the convergence study 
presented by Guimarães(2006). For these comparisons the tube boundary conditions were set as follows: a) axial and  
circumferential displacements at bottom nodes are fixed and, b) at the upper nodes, axial displacements are equally 
imposed while the circumferential displacements are set proportional to the radial coordinate of each node (as in a tor-

Figure  3 – Circumferential and Radial Displacements at the Model Upper Face Nodes, for Case 1 Analysis  

 
Figure  4 – Strain Component at the Model Upper Face Nodes, for Case 1 Analysis 

sion mode). These boundary conditions were set such that they reproduce the analytical solution sough. 

        The finite element results are all presented at the element nodal points. For the axial displacement at the model 
upper nodes they resulted in an error less than 0,004%, with respect to the analytical solution. Circumferential and 
radial displacement comparisons, along the radial coordinate, are shown in Figs. 3. A very good agreement for the 
radial displacements-W is observed, as they represent the largest displacement values in the model. Strain results are 
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compared in Fig. 4. Circumferential strain distributions (εθθ) agreed quite well with the analytical solutions, while radial 
(εRR) and shear (γXθ) strains present some differences. These are mainly due to the order of the interpolation functions 
employed in the formulation, what resulted in constant numerical values for the radial strain component, within each 
element, and a discontinuity at the nodes. Moreover, these two numerical results are, at least, one order of magnitude 
smaller than the largest circumferential strains εθθ, validating the model discretization used, as shown in the 
displacement solutions in Fig.3. Stress component distributions are presented in Fig. 5. A good agreement in the results 
is obtained, except for the radial stresses which are very much affected by the approximations employed in the model 
for the radial strain distribution. As in the previous comparison, these stress components are, at least, one order of 
magnitude low than the circumferential and the shear stress values.  It is noticeable, in the graphs, sharp stress 
distribution discontinuities at the layer changing node, in the tube radial direction. The largest stress value jump occurs 
in the shear (X-Theta) distribution, what is the main cause for degradation of the composite materials, such 
delamination failures, as reported in the literature by Herakovick (1979 and 1989).  

 
Figure  5 – Stress Components at the Model Upper Face Nodes, for Case 1 Analysis 

  Case 2 – Comparison to Other Numerical Solutions 
   A more realistic numerical comparison, with the results furnished by the commercial finite element code ANSYS, 

is set in this analysis. The finite element model furnished by this study employed twelve equally spaced elements � in 
the radial direction - with the boundary conditions set, only at the bottom nodes, as fixed displacements in axial and 
circumferential directions. ANSYS finite element program model was used for comparison: the same number of 
elements in the radial direction but a total of 2400 brick � eight node elements � to represent the entire ring structure. 
Only one layer of elements was used in the axial direction. The use of such model was motivated by the need of an 
evaluation of the problem as defined by an axisymmetric structure, what was confirmed by the three nodal displacement 
results provided by ANSYS analysis, which varied in axial and radial directions only.   

   Figure 6 presents solution comparisons for axial, circumferential and radial displacements at the model upper face 
nodes, along the radial direction. It can be noticed a good agreement between the numerical results � with an error not 
larger than 2% - and, as in the previous analysis, the largest absolute value for the displacements occurred in the radial 
direction. However, as per the circumferential displacements-V no similarity to classical torsion kinematics is observed, 
as stated in the analytical model discussed in Case 1 analysis.  
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Figure  6 – Displacements at the Model Upper Face Nodes, for Case 2 Analysis 

 

 
Figure  7 – Strain Components at the Model Upper Face Nodes, for Case 2 Analysis 
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  Figure 7 presents the strain results at the nodes. Major differences between the numerical results are observed at 
nodes close to the layer-transition node. However, since solutions presented by ANSYS are �smoothed� � a procedure 
which averages the stress component node values obtained at the two adjoining elements -, it can be concluded that a 
fairly good agreement in the results is obtained. Comparisons for the stress components in the finite element nodes are 
shown in Fig. 8. The same path of results, as for the strains, is then observed. Of course, the use of large order elements 
will improve the solution approximations and provide better solution comparisons.      
 

 

 
Figure  8 – Stress Components at the Model Upper Face Nodes, for Case 2 Analysis 

   

Conclusions 
The formulation of an axisymmetric finite element for composite material modeling, in linear analysis, has been 

presented and implemented. The solution results of sample analyses have been presented and compared to other 
analytical and numerical solutions, which indicates the element applicability. It has been shown that the element 
predicts the significant displacements and, strains and stresses, for the finite element approximation used. However, the 
total element formulation is based on a number of assumptions and further detailed studies are still required in order to 
identify the limit of range of problems for which the element can be employed. 
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