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Abstract: The present work is aimed at modelling and characterizing viscoelastic materials. A constitutive
equation for viscoelastic materials, in time domain, is proposed based on the concepts of internal variables
and the thermodynamics of irreversible processes. The proposed constitutive equation is capable of dealing
with common viscoelastic behavior such as creep and relaxation phenomena. Once one has chosen the par-
simony of the model, a finite element model of the system, which is parameterized by a set of constitutive
parameters, is built. The constitutive parameters required to describe the dynamic behavior of the viscoelastic
material are estimated by means of the solution of the associated inverse problem which was formulated in
frequency domain. The inverse problem has been solved by means of a modified Levenberg-Marquardt tech-
nique. The effectiveness of the proposed approach has been evaluated through experimental data obtained
out of a viscoelastic sandwich beam. The structure was instrumented with an electromechanical shaker and
three piezoelectric accelerometers. The frequency response function of the first accelerometer was used for the
estimation process. The second and third accelerometer data were used in the validation step.
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1 INTRODUCTION

Nowadays, modeling plays a crucial role in controlling and optimizing industrial process by providing means
of better understanding the involved phenomena and of improving the capacity of predicting future behavior,
probably its key feature. The use of such models is mainly based on computational simulations, giving rise to
two shortcomings concerning the reliability of the results: numerical pitfalls inherent to approximation methods,
and uncertainties associated to non modeled dynamics and to parameters values. This last drawback can be
alleviated by System Identification, which consists of the process of improving a mathematical model for a real
system by combining physical principles with experimental or field data. The main idea is to identify a set of
parameters such that, over a desired range of operating conditions, the model outputs are close, in some well-
defined sense, to the system outputs, when both are submitted to the same inputs. Due to the incompleteness of
available information and unavoidable measurement errors, system identification only achieves an approximation
of the actual system.

The present work is motivated by the need of improving the capability of predicting the mechanical response
of damping materials when applied to control the level of vibrations in structures or mechanical components.
Usually those materials present a viscoelastic behavior, which is the main focus of the present work.

The dissipation mechanisms inherent to those materials are tied to chemical micro-structure and, therefore,
a viscoelastic constitutive equation could be derived from a multiscale perspective. The main drawback of this
approach would be the computational effort that a multiscale computation takes, which can lead to prohibitive
costs for analyzing real applications. Taking this in consideration several phenomenological models have been
proposed in order describe the viscoelastic behavior in terms of macro variables [6], [10] and [11] . Those models
introduce a set of parameters that must be identified, which represents the core of the present paper.

A constitutive equation for viscoelastic materials, in time domain, is proposed based on the concepts of
internal variables and the thermodynamics of irreversible processes. The proposed constitutive equation is
capable of dealing with common viscoelastic behavior such as creep and relaxation phenomena [6], [2] and [10].

The constitutive parameters required to describe the dynamic behavior of the viscoelastic material are
estimated by means of the solution of the associated inverse problem which was formulated in frequency domain.
The inverse problem has been solved by means of the Levenberg-Marquardt technique [4].

The effectiveness of the proposed approach has been evaluated through experimental data obtained out
of a viscoelastic sandwich beam. The structures were instrumented with an electromechanical shaker and
three piezoelectric accelerometers. The frequency response function of the first accelerometer was used for the
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estimation process. The second and third accelerometer data were used in the validation step.

The article is organized as follows. The second section presents the proposed constitutive equation. The
third section presents the Levenberg-Marquardt parameter estimation technique. The fourth section presents
an example. Lastly, the fifth section presents the concluding remarks and future works.

CONSTITUTIVE EQUATION

Aiming at proposing a constitutive equation for viscoelastic materials the Thermodynamics of Irreversible
Processes have been considered along with the concept of internal variables [2] and [6]. Considering a small
strain thermomechanical process, the free energy function ψ and the pseudo-potential of dissipation ϕ were
chosen as follows

ψ(ε(x, t),ξ 1(x, t), . . . ,ξ I(x, t)) =
1

2ρ
[E ε(x, t) · ε(x, t)+

I

∑
r=1

Er (ε(x, t)−ξ r(x, t)) · (ε(x, t)−ξ r(x, t))] (1)

ϕ(ε̇(x, t), ξ̇ 1
(x, t), . . . , ξ̇ I

(x, t)) =
1

2ρ
[η ε̇(x, t) · ε̇(x, t)+

I

∑
r=1

ηr ξ̇ r
(x, t) · ξ̇ r

(x, t)] (2)

where ρ is the specific mass, E,E1,. . .,EI and η ,η1,. . .,ηI are constitutive material parameters, ε is the total strain
tensor and ξ 1,. . .,ξ I are the internal variables tensors. Once the free energy function ψ and the pseudo-potential
of dissipation ϕ had been chosen one can obtain the constitutive equation by means of the fulfillment of the
Clausius-Duhem Inequality. Therefore, the constitutive equation renders as follows

σ(x, t) = E ε(x, t)+
I

∑
r=1

Er (ε(x, t)−ξ r(x, t))+η ε̇(x, t) (3)

ξ̇ r(x, t) = br (ε(x, t)−ξ r(x, t)), r = 1, . . . , I (4)

where σ is the stress tensor and the parameter br is defined as the inverse of the relaxation time and it is defined
as follows

br =
Er

ηr
(5)

It should be emphasized that the constitutive equations (3) and (4) should be able to reproduce some common
dynamic behaviour of viscoelastic materials such as creep and relaxation. The ability of these constitutive
equations to reproduce such phenomena can be shown through some mathematical manipulations with equations
(3) and (4) [2]. The physical meaning of the constitutive parameters E, Er and br, r = 1, . . . , I, can be easily
understood by means of the the stress relaxation response of a one-dimensional system whose constitutive
equation is given by equations (3) and (4). Such a stress relaxation response is shown in equation (6)

σ(t) = E ε0

[
1+

I

∑
r=1

∆r e−br t
]

(6)

where ∆r is defined as the ratio of Er and E. From equation equation (6) one can conclude that ∆r and br are
associated to the magnitude of relaxation and to the inverse of the relaxation time of the r-th internal variable.
Another aspect that should be highlighted is the fact that such constitutive equations are able to reproduce
the behaviour of a viscoelastic material whose loss factor is approximately uniform over a certain frequency range.

2 PARAMETER ESTIMATION

In order to fully characterize a mechanical system it is required to estimate a set of unknown parameters
which is representative to its dynamics. Therefore, for the sake of simplicity, it is defined a vector p, which
contains information concerning all the unknown parameters of a system, as follows

p = {p1, p2, . . . , pNp}T (7)

where Np corresponds to the number of unknown parameters. In the inverse problem formulation one considers
that the set of parameters p is unknown and that there is available a set of experimental data concerning the
response of the system yE(t) to a certain excitation/stimulus within the period of time [0, t f ]. The basic idea
behind the inverse problem formulation is to find the set of parameters p that best correlates the response y(t),
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which is obtained from the mathematical model of the system under study, with the experimental response
yE(t), when they are subject to the same excitaion/stimulus. Therefore, it is required to define a function S
to measure the difference between these two responses yE(t) and y(t). If one assumes the hypothesis that the
measurement errors have zero mean, constant variance, Gaussian distribution and that they are additive and
non-correlated, the error function S that provides the minimum variance estimates is the ordinary least squares
norm defined as follows [1] and [4]

S(p) = [Ȳ−Y]T [Ȳ−Y] (8)

where (•)T indicates the transpose of (•) and Ȳ and Y contain information about the experimental and the
estimated responses of the system respectively and are defined as follows

ȲT = {Ȳ1T , . . . , ȲT
Nt} (9)

YT = {YT
1 , . . . ,YT

Nt} (10)

where Nt corresponds to the total number of measured instants of time. The column vectors Ȳ j and Y j contains
experimental and estimated information respectively and they are organized such that [Ȳ j]s and [Y j]s represent
measurements of the s-th sensor taken at the j-th instant of time. It should be emphasized that the error
function S can be defined in different ways [5] and a broader definition could have been adopted, for example,
as follows

S(p) =
∫ t f

0
Z(yE(t),y(t), t)dt (11)

where the function Z could be simply the difference between the experimental and the estimated response or
a more complex function . A representation such as the one shown in (11) considers that the measured data
can be approximated as being continuous [4]. In the present article the ordinary least squares norm (8) will be
adopted as the error function.

Therefore, once the error function had been properly defined, the inverse problem consists in determining
the set of parameters which minimizes such a function, viz.

min
p

S(p) p ∈P (12)

where every constraint associated to the inverse problem is represented by the solution set P.

The inverse problem defined in (12) will be solved, in the present article, by means of the Levenberg-
Marquardt method, which corresponds to a powerful iterative method for solving nonlinear least squares prob-
lems of parameter estimation [1] and [4]. This technique was first derived by Levenberg [7] in 1944. Later, in
1963, Marquardt [8] derived the same technique by a different approach. The Levenberg-Marquardt technique
tends to the Steepest Descent Method at the neighborhood of the initial guess used for the iterative procedure
and tends to the Gauss Method at the neighborhood of the minimum of the ordinary least squares norm. AIm-
ing at minimizing the functional S in equation (8) one has to obtain the derivative of S(p) with respect to the
set of unknown parameters p, and then equals such derivative to zero, i.e., the optimality condition is given as
follows

∂S(p)
∂ p j

= 0, j = 1, . . . ,Np (13)

The optimality condition in (13) can be rearranged in matrix notation as follows

∇S(p) =−2J [Ȳ−Y(p)] = 0 (14)

where the matrix J is the Sensitivity Matrix whose components, named as sensitivity coefficients, are defined
as follows

Ji j =
∂Yi

∂ p j
, i = 1, . . . ,Ns×Nt and j = 1, . . . ,Np (15)

The iterative procedure of the Levenberg-Marquardt method is given by

pk+1 = pk +[JkT
Jk + µkΓk]−1JkT

[Ȳ−Y(pk)] (16)

where J is the Sensitivity Matrix, µ is a stabilization parameter, Γ is a diagonal matrix and the superscript
(•)k denotes the iteration number. The purpose of the term µk Γk in equation (16) is to reduce the oscillations
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or instabilities due to the ill-conditioning associated to the problem. The decrease of these instabilities or
oscillations can be achieved by adopting a matrix µk Γk whose components are relatively large as compared to
the components of the matrix JT J [4]. At the beginning of the iterative process a large parameter µ is chosen
and the Levenberg-Marquardt Method tends to the Steepest Descent Method. The parameter µ is gradually
reduced as the iterative process approaches the solution of the problem and then the Levenberg-Marquardt
Method tends to the Gauss Method. The parameter µk is chosen such that S(pk+1) < S(pk) remains valid at
every iteration. The stopping criteria adopted for the iteration process are the ones suggested by Dennis and
Schnabel [3] as follows

S(pk+1) < ε1 (17)
||J(pk+1)T [Ȳ−Y(p)] ||< ε2 (18)

||pk+1−pk ||< ε3 (19)

where ε1,ε2 and ε3 are user-prescribed and || • || corresponds to the Euclidean norm. Different versions of
Levenberg-Marquardt method can be found in the literature, depending on the choice the diagonal matrix Γ
and on the form chosen for the variation of the parameter µ [4]. For the present work it has been chosen the
matrix Γ as follows

Γk = diag[JkT
Jk] (20)

Assuming that a set of experimental data Ȳ is available, the Levenberg-Marquardt algorithm used in the present
work is detailed bellow [4]

1. k = 0 and µ0 = 0.001 .

2. Solve the direct problem for the initial parameter vector pk.

3. Compute S(pk).

4. Compute the sensitivity matrix Jk and Γk using the current parameter vector pk.

5. Solve the system of equations

[JkT
Jk + µk Γk]∆pk+1 = JkT

[yE −y(pk)] (21)

6. Compute the new estimate pk+1 = pk +∆pk

7. Solve the direct problem using the new estimate p(k+1) in order find y(pk+1). Compute J(pk+1).

8. If S(pk+1)≥ S(pk), replace µk by 10µk and return to step (4).

9. If S(pk+1) < S(pk), adopt the new estimate pk+1, replace µk by 0.1µk and return to item 4.

10. Check the stopping criteria (17), (18) e (19). The iterative process stops if any of the them is satisfied,
otherwise, replace k by k +1 and return to item 3.

3 ILLUSTRATIVE EXAMPLES

3.1 Sandwich Beam

The system under analysis is a sandwich beam whose core is made of a viscoelastic material and whose
sketch is shown in Figure (1). The base layer and the constraining layer are made of aluminium and the core
of the sandwich is a viscoelastic tape produced by 3M. The specification of the tape is 4950.

The length of the beams is 1.46m. The system is instrumented with four piezoelectric accelerometers
(PCBSN 13575) placed at 1/4, 2/5, 1/2 and 3/4 of the beam length and with an electromechanical shaker
collocated with accelerometer number one. The first layer, called base layer, is the only one which is connected
to the support as shown in Figure(1). The base layer is hinged at both ends.

As a mathematical model of the system shown in Figure(1) is required to be used in the estimation process,
a finite element model of this system was built [2]. This finite element model takes the constitutive equations
(3) and (4) into account and the kinematics that was adopted for this model is shown in figure (2).
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Figure 1 – Sketch of the viscoelastic sandwich beam.
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Figure 2 – Finite element model.

The estimation process considers the FRF of the first and second accelerometers within the band (0−100)Hz,
containing 200 points each, and it was measured at a laboratory at 25 0 C. The first analysis considers the
viscoelastic model containing one internal variable and the parameters have been denoted as follows:

G = p1×106 (22)
G1 = p2×106 (23)

b1 = p3 (24)

As no test has been done previously in order to obtain initial estimates for the parameters it was considered
a simple test to determine the order of magnitude of parameter G. The test that has been performed considered
a sandwich beam similar to the under analysis but with an elastic core whose first three natural frequencies were
evaluated for a set of values of G. It was concluded that these three natural frequencies are close to the informa-
tion contained in the FRFs for values of G within (3.5,5.5) MPa. Such information was important to determine
the initial guesses for G and Gr. Unfortunately the authors did not have a specific pretest for determining a
suitable range of initial guesses for b1. Three different initial guesses were tested, namely: p(0) = {5,1,1}T ,
p(0) = {5,1,10}T and p(0) = {3,3,1}T . All of the converged to the estimated vector p̂ = {1.58,10.82,652.6}T .
Figure (3) graphs the experimental and estimated frequency response functions of the accelerometers 1 and 2
respectively.
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Figure 3 – Experimental an estimated FRFs for accelerometers 1 and 2.

From figure (3) one may conclude that the estimated and the experimental FRFs are in agreement. The
L2 norm of the difference of the experimental and estimated FRFs of the accelerometers 1 and 2 are 12.45 and
8.88, respectively.

In order to evaluate the effect of the inclusion a new internal variable it is considered a new model for the
viscoelastic core whose dynamics is assumed to be described by two internal variables. The vector on unknown
parameters may be defined as follows

G = p1×106 (25)
G1 = p2×106 (26)
G2 = p3×106 (27)

b1 = p4 (28)
b2 = p5 (29)

It was used the experimental FRFs of the accelerometers 1 and 2 and the initial guess was chosen as follows
p(0) = {2,2,2,1,1}T . The estimated parameter vector is p(0) = {0.469,2.14,12.6,59.95,1090}T . Figure (4) show
the experimental and estimated FRFs of acceleromters 1 and 2, respectively. One can clearly see from figure (4)
that the level of agreement between the estimated FRFs and the experimental ones is higher than the one shown
in figure (3). The L2 norm of the difference of the experimental and estimated FRFs of the accelerometers 1
and 2 for this 2 internal variable model are 11.88 and 7.14, respectively.

authors decided to con

Aiming at validating the provided results it is considered a new set of experimental data. The first validation
considers time response of the first and third acceleromters when the system is excited with a sine-chirp sweeping
the band (0,100) Hz. The validation for accelerometer number one is shown in figure (5) and for acclerometer
number three in shown in figure (6). The responses graphed in figures (5) and (6) are in favor of the estimated
parameters. Although the estimated responses provided by the one internal variable model and by the two
internal variable model seems to be quite similar in figures (5) and (6) the model which best describes the
system is the one which contains two internal variables. Such a conclusion can be obtained out of the comparison
between figures (3) and (4) and by the H2 norm of the differences between the experimental and estimated FRFs
for these two models.

4 CONCLUDING REMARKS

The present work proposed a internal variable based constitutive equation to describe the dynamical behavior
of viscoelastic materials. This constitutive equation is linear and it seems that it is able to describe common
viscoelastic behavior such as creep and relaxation. The parameters that characterize the constitutive equation
have been estimated by means of the classical Levenberg-Marquardt technique.

The suitability of the proposed constitutive equation has been assessed on a set of experimental data out
of a sandwich beam whose core is made of viscoelastic material. The inverse problem has been formulated in
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Figure 4 – Experimental an estimated FRFs for accelerometers 1 and 2.
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Figure 5 – Experimental and estimated time responses measured by accelerometer number one for a sine chirp
excitation.

frequency domain and it has been used the frequency response function of two of the accelerometers within
the band (0,100) Hz. As a means of validating the estimative obtained for the parameters, it has been been
used the time domain response of two acceleroters due to a sine chirp excitation. The validation step showed
agreement between the experimental and the predicted response.

The contribution of this work is to provide a constitutive equation for linear viscoelastic materials in time
domain. As this constitutive equation is defined in time domain it is straightforward to build a time domain
mathematical model of the system after the estimation of the constitutive parameters. Such a time domain
model can be used to simulate the dynamical behavior of the system under different environmental conditions.

For future works the authors will: (i) perform estimation within wider frequency bands, (ii) consider time
domain data for the estimation process and (iii) analyze a systematic way of determining the number of internal
variables required to describe the dynamical behaviour of the system.
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Figure 6 – Experimental and estimated time responses measured by accelerometer number three for a sine chirp
excitation.
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[9] MOSSBERG, M., HILLSTRÖM, L., ABRAHAMSSON, L., “Parametric

Identification of Viscoelastic Materials from Time and Frequency Domain Data”, Inverse Problems in
Engineering, 9:(6), pp. 645-670, 2001.

[10] WINEMAN, A.S., RAJAGOPAL, K.R., Mechanical Response of Polymers: an Introduction, Cambridge
University Press, 2000.

[11] RUSOVICI, R., Modelling of Shock Wave Propagation and Attenuation in Viscoleastic Structures”, M.Sc.
Dissertation, Faculty of the Virginia Polytechnique Institute and State University, 1999.

RESPONSIBILITY NOTICE

The author(s) is (are) the only responsible for the printed material included in this paper.


