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Abstract: The Finite Element Method has itself asserted as astandard tool for the crash test numerical assessment of
complex vehicle structures. However, despites the development of computer power, the numerical computation remains
still very costly and time consuming activity. The problem thereby is the creation of simplified (reduced complexity)
models destined for the analysis. This work considers the use of coupled FEM and Artificial Neural Network (ANN)
models: ANN based models are used to replace some parts of thewhole complex FEM model of the vehicle, providing
a significant simplification of the initial model. Two possible uses of ANN are considered herein in order to replace a
part of the whole structure. The first one consists in an ANN used for the identification of model behaviour. The second
ANN produce an evaluation of the accelerations field at the interface between the two substructures. The approaches
are studied and validated on simple but significant nonlinear unidimensional situation. Then, the efficiency of the hybrid
model is demonstrated on a real situation when used in conjunction with an explicit crash test code. Initial results show
that using the hybrid FEM/ANN models may represent an interesting alternative for crash test simulation of complex
vehicle structures.
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INTRODUCTION

Crash is a strongly non linear dynamic phenomenon which takes a central place in vehicle design. Namely, it is
significant when analyzing the dynamic behavior of automobile structures. The numerical simulation of crash test may
considerably speed up the design procedure and has been considered in many studies. In this framework, the compu-
tational cost is a severe limitation: the pioneer works haveconsidered simple one-dimensional mass/spring simplified
models(see for example Mentzer, 1982, Mentzer, 1992, Chevaet al. 1996). These models are computationally cheap,
but they do not represent the vehicle CAD geometry and their practical use is not straightforward. Nowadays, the evolu-
tion of computational facilities makes that crashe simulations may be more conveniently handled with commercial Finite
Element (FE) explicit sofwares (Hallquist and Tsay, 1999; PAM-CRASH, 2000; RADIOSS, 2000,...). Nevertheless, an
important limitation of the current models remains the meshsize (which quickly becomes very large): in fact, the CAD
models used involve a detailed geometry, since a single model must be used for the analysis of all types of crash (frontal,
side, offset or even “roll-over”).

More recently, another approach has been proposed for the reduction of FE Models (FEM) destined to crash simula-
tions has been proposed, using simplified or complete analysis of isolated parts of the vehicle, which are subsequently
assembled (Drazetic et al., 1993; Cornette et al., 1998). This work considers an analogous approach, but our main goal
is to construct a hybrid complete model where some parts are simplified parts while others remain detailed. More pre-
cisely, we focus on the particular problem introduced by theuse of Artificial Neural Network (ANN) in the simulation of
substructures of the global vehicle: ANN must be able to reproduce a nonlinear mechanical behavior in a very efficient
calculation (much faster than FEM).

Crash tests consist generally in the projection of the vehicle against a rigid wall or a deformable barrier with an initial
speedV0. In practice, differents speeds going from 10km/h to 65km/hare used. Each speed needs a complete crash
simulation. Thus, it appears that a significant improvementmay be obtained by a reduction of the number of speeds for
which a complete calculation is requested. This naturally suggests the use of a hybrid FEM/ANN model generated as
follows:

1. the complete vehicle FEM simulation of the crash is carried out for some selected initial crash velocities. This
generates a database containing information about the dynamic behavior of the vehicle.

2. the database is used for training the ANN model.

3. the hybrid FEM/ANN model is used to simulate the crash testfor the velocities not included in the database.

So, the improvement introduced by the hybrid model grows with the number of analysis in the third stage upper defined
since it has only a partial cost of the complete FE analysis (FEA), carried out in the first stage.
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Figure 1 – “Multi-layered” ANN with 5 input neurons, 2 hidden layers of n neurons and 1 output neuron.

In the sequel, we briefly present the guiding principles of the operation of ANN networks. In order to generate an
ANN able to reproduce a typical signal functionas(t), we consider a simple but significant situation involving a one
Degree Of Freedom (DOF) system. The analysis of this simple situation leads to the definition of the general principles
for the generation of an efficient ANN model able to produce the temporal sequence prediction ofas(t) based on its past
and initials conditions. Then, we analyze the behaviour of the proposed ANN when additional ecxcitation is considered,
in order to take into account interface accelerations whichintervenes when couplingo to other substructures must be
performed. Finally, an efficient application of the hybrid model on a real situation is performed, involving coupling with
an explicit crash test code.

ARTIFICIAL NEURAL NETWORKS

Artificial Neural Network are considered with a growing interest in the field of computational mechanics. The basic
principles of ANN have been stated in the 40-s starting by analogy with a human nervous system. A large number of
different ANN models concerning complex processes may be found in the literature. There is a strong analogy between
identification problems and ANN training, which is exploited in this work: if an arbitrary nonlinear function in time
domain is given, we may generate ANN in order to identify a simplified substructure having a dynamical behavior which
corresponds to an approximation of these function. The mainadvantage of ANN in such a case is the use of a small
number of parameters when compared to other methods.

We do not introduce here the various existing ANN models or algorithms and we focus on the generation of a “black
box” which replaces part of the complete FEM. ANN consist in several basic unities - usually called neurons - which
exchange information by weighted connections. ANN are mainly characterized by the type of the units used and the
topology of the connections - which is called the network architecture. The ANN performance is close connected to this
architecture, which generally must be adapted to the task under consideration. In this work, we use a “multi-layered”
architecture, illustrated in figure 1, which is one of the most popular network architectures (Cichocki and Unbehauen,
1994).

The information flux between neurons involves weights weights wi j which characterize the importance of the con-
nections. Training an ANN consists in the determining theseweights, by using optimization algorithms - this process is
also called ”learning”. We use in this work a supervised training which requests the knowledge of all inputs and their
corresponding desired outputs. When the input data is introduced in the network, ANN perform a calculation and produce
an output. The difference between this output and the desired output gives an measurement of the error to be reduced
by a modification of the weights, performed by the classical “gradient back-propagation” algorithm (Rumelhart, 1986).
This algorithm is based on the standard gradient descent methods: the derivatives of the error with respect to the weights
generate a gradient and the opposite direction leads to a diminution of the error.

ANN BASED PREDICTION OF AN ACCELERATION TEMPORAL SIGNAL

From the theoretical stand point, ANN are able to “predict the future” of an arbitrary signal from known information
about its past (see, for instance, Box and Jenkins, 1976 and Wong, 1991). For the prediction of the temporal acceleration
signal as(t) of a mechanical system, an ANN defines a nonlinear functiony(k) = Ψ(X(k)) wherey(k) = {as(t), t =
(k+ 1)∆t, k = N, N−1, ..., n} is the desired output, whileX(k) = [ y(k−1), y(k−2), ..., y(k−n) ] is the history of the
accelerations. We underline that this approach implicitlysupposes that the present value of the temporal sequence is
connected to theN preceding values. The architecture diagram for training the ANN is illustrated in figure 2 (the operator
z−1 stands for accessing the preceding values:z−1y(k) = y(k−1)).

In order to evaluate the ability of the ANN for the predictionof the acceleration signal, let us consider a simple (1D)
but non linear dynamic system (figure 3), where the rigidity is a function of displacementx: K(x) = 1000.e−10x2

+ 100
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Figure 2 – Diagram of the ANN training.

Figure 3 – 1 D mass/spring system that describes crash behavi our.

N/m. With C = 5 N/m/s andM = 1 kg, the acceleration response for two initial velocitiesV0 = 8 andV0 = 14 m/s is
illustrated in figure 4.

The training is supervised, since the fixed inputy(k−1), y(k−2), y(k−3) is imposed andy(k) = as(t) is sought at
the ANN output. The training strategy consists of repeatingrandomly the presentation of the 2 simulated functions until
they are conveniently approximated by the output of the ANN.This prevents the ANN from an eventual dependence on
the order of introduction of the data. Different tests have been performed, involving the learning of these two functions
by ANN with 2 and 3 layers of neurons. The target was a prediction error threshold of 5% . The best results obtained
correspond to a success rate of only 3/20 and concern a 2 layers network having 10 neurons.

This situation is often found when using ANN and methods of prevention may be found in the literature. For instance,
supplementary variables may be introduced in the ANN input or “recurrent” networks may be used. This last strategy
consists in presenting the history of the signal which has been already carried out by the network, in its current state of
training, instead of the target signal history at the network input (Narenda and Parthasarathy, 1990).

Recurrent learning is considered as more adapted to the simulation of dynamic systems: for instance, it should be

Figure 4 – Accelerations functions of the 1D system for 2 init ial velocities.
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Figure 5 – Block diagramm representing the equilibrium of 1D nonlinear system.
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Figure 6 – Optimal ANN architecture.

noted that our simple system can be described by 3 generalized inputsx(t), ẋ(t) and, in generalFext(t), for one output
ẍ(t). For a unit mass, the motion equation of this system can be written:

ẍ(t) = Fext−Cẋ(t)−Kx(t) (1)

and it is thus possible to represent it by a block diagram, shown in figure 5.

One of the main characteristics of this diagram is the presence of the two closed loops representing two forces - their
sum is referred as the “recall force”. Thus, the identification of this system may be carried out by using convenient
approximations of these forces. In fact, the structural parameters (C and K) are taken into account in the “recall force”.
However, the ANN used to simulate the system must perform allthe mathematical operators present in the diagram 5,
including the double integration of the acceleration signal and some inversions. These two last operators do not introduce
significant difficulties, since only the stiffness of the system is nonlinear. So, it appears that the architecture may be
simplified in order to let to the ANN the representation of theinternal recall forces, while the simple mathematical
operators may be let to the circuit. Even if the proposed diagram in figure 5 represents the state of the system at the
instantt, it is clear that the system parameters are also history dependent. In order to fully represent the dynamic behavior
of the part, the history of the loads must be also furnished tothe ANN. Moreover, during the simulation of the crash,
recall forces depend on the position of the structure. Therefore, the history of displacements should also appear at the
input furnished to the ANN. An ANN architecture corresponding to these ideas is proposed in figure 6 where the external
forces are kept to allow a generalization thereafter (although those are not present in the system now). It should be noted
that the “closed loop” in this diagram corresponds to the recursion introduced in recurrent network, what connects the
mathematical procedure to a physical characteristic of thesystem.

Using such a strategy, the convergence is easily achieved for different layer architecture. For instance, a 2 layers
network having 10 neurons each have now a full success rate (20/20) within a 1% threshold error prediction. The following
series of experiments gives us an evaluation of the convergence of the training and the capacities of generalization of the
considered ANN. To show the ANN performance, prediction forthe 1D system accelerations over the time 0-1 second
are superimpose to the finite difference simulation on figure7. On this figure, 9 graphs are presented for 9 different initial
velocities:V0 =2, 6, 8, 10, 12, 14, 16, 18 and 20 m/s respectively. The straight line concern the ANN prediction while
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Figure 7 – Discrepancies between ANN responses and exact sol utions when varying initial velocities for the free
1D system.

the line with circle marker concern the finite difference simulation. Since the ANN is train with the finite difference
simulation for the 8 and 14 m/s initial velocities, good agreement is achieve in this case. We notice that the ANN behaves
perfectly in the case of interpolationi.e. for initial velocitiesV0 =10, 12 m/s. It performs well also the extrapolation for
the low velocities:V0 =2, 4, 6 m/s. However, in the case of extrapolation with highervelocities (V0 =16, 18, 20 m/s)
the ANN provides erroneous answers, but as soon as the velocity goes down up to the learned level, the ANN provides a
correct response. Another experiments show that the results are much better when we use the high velocity curvesV0 =14
m/s andV0 =18 m/s as a training base of the ANN. It also comes out from thisseries of experimentations that the training
time of the ANN is much longer (8 times) for high velocity curves. This is certainly explained by the fact that the ANN
must learn how to simulate the behavior of the nonlinear system in a wider domain of amplitudes. In order to decrease the
learning time, we may increase the number of neurons: the first results obtained show that learning time is much longer
for the networks whose size is not large enough (2x6, 2x7), but it decreases quickly when the number of the neurons
becomes higher.

ANN SUBJECT TO EXCITATIONS

The strategy for obtaining a simplified FE crash model is based on the coupling of the two substructures, where the less
loaded is replaced by ANN. Thus, it is necessary to evaluate the ANN behaviour not only for different initial conditions,
but also for different loads, since this is essential in order to coupling substructures. Moreover, such an approch unifies the
couplings realised by load or acceleration transfer. In this work, substructure FEM model to be simplified is considered
as a system having an inputFext(t) or ad(t) and an outputas(t). According to the previous strategy, the external force
Fext(t) is furnished by measurements, while displacements and velocities are obtained by numerical integration of the
accelerations. Then, it is possible to get an approximationof the recall force functiong(x(t), ẋ(t)) by the ANN.

To evaluate the capacity of the previously proposed ANN architecture, the previous 1D system (using the same para-
meters) is loaded by 2 external arbitrary accelerationa1

d = 100sin(100· t) anda2
d = 100cos(10· t) (see figure 8a) . Then,

4 functions from each 2 initial velocitiesV0 = 8 andV0 = 14 m/s and the 2 external accelerations constitute the data base
of training (figure 8b). Here, the ANN has 2x20 neurons and thetraining converges to an acceptable level of error (10−5)
after 81100 presentations.
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a) excitation functions b) recall force functions

Figure 8 – External excitation and recall force functions fo r the 1D system.

Figure 9 – Discrepancies between ANN responses and referenc e signal for V0 = 20 m/s and a1
d(left), and V0 = 6.5

m/s and a2
d (right) for the 1D system.

Figure 9 shows the discrepancies between the network response and the reference signal for the worst cases (V0 = 20
m/s fora1

d andV0 = 6.5 m/s fora2
d) showing that a good prediction confidence could be assignedto ANN responses when

varying initial velocities for thea1
d anda2

d external loading. In order to check the abilities of this ANN, the system has
been excited by the 3 random loadsa3

d , a4
d anda5

d (illustrated in figure 10) and the differences between the ANN responses
and exact results are presented in figure 11. These graphs show a good aggreement.

HYBRID FEM/ANN MODEL

The preceding considerations show that the ANN is able to reproduce a nonlinear crash for an one DOF system.
Therefore, it is necessary to consider a more realistic configuration where the ANN and the FEM interact at once for a
multiple DOF on the interface. Using one large multi-port ANN to replace the entire part of the model is not effective to
calculate, since ANN apply badly to the problems of large size (in a number of inputs, outputs and neurons). This difficulty
is known as “scaling effect” in the literature (Haykin, 1994). Thus, we consider the use a number of independent, small
size and single input ANN for each interface DOF. Training data for the corresponding network are obtained directly at
these DOF.

In order to accelerate the learning, we have introduced the training “in order”, where the training is sequentially
performed for the nodes and the weights determined for node Nare used as starting values for the training of concerning
node N+1. This technique introduces some continuity between neighbour nodes (their weights are often very similar),
while leaving the ANN free to independently reproduce the behavior for each interface DOF. The diagram illustrating this
strategy is presented in figure 12.
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Figure 10 – External random loads applied for the ANN model of the 1D system validation.

Figure 11 – Discrepancies between ANN response and exact res ults for the 3 random loadings a3
d , a4

d and a5
d of

the 1D system.

Figure 12 – Trained in order representation using one ANN per DOF.
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Figure 13 – Explode substructures view for the body-in-whit e.

Figure 14 – Crash kinematics of the body-in-white structure for V(4)
0 = 15 m/s.

CRASH SIMULATION APPLICATION

The application concerns the crash simulation of a body-in-white structure vehicle against a rigid wall with four

different initial velocitiesV(1)
0 = 8, V(2)

0 = 12,V(3)
0 = 14 andV(4)

0 = 15 m/s. The FEM mesh of the vehicle is composed
of 8114 triangular elements. It is subdivided into two substructures at the roof interface (figure 13). This decomposition
is intuitive since the roof is linked to the remainder of the structure only by four thin pillars. Nevertheless, its total
suppression greatly influences the structure deformation.Model parameters are a Young modulus ofE = 210 GPa, a
Poisson ratioν = 0.3, a yield stressσy = 220 MPa for a densityρ = 7900 kg/m3 and a thickness of 1.5 mm.

The used explicit FEA takes into account a two slopes plasticmaterial behaviour with an isotropic hardening and a
Coulomb law. The coupling is achieved with methods often used for the parallelization of the explicit simulation codes
(Fahmy and Namini, 1994). By reasons of efficiency, the communication between substructures is carried out at every
instantt by the exchange of accelerationsad(t) andas(t) at each interface degree of freedom. Thus, a partition through the
elements of the physical border is requested in this situation (they are duplicated during the decomposition process).Then,
time integration of the dynamic equilibrium could be carried out independently for each sub-domain and the coupling is
made at each time step after evaluating accelerations, by their transfer between the substructures.

The first step consists in a FEA for two initial velocities ofV(2)
0 andV(4)

0 with the complete FE model. The kinematics

of the crash forV(4)
0 is illustrated in figure 14. Then, each interface node functions of roof are learned by the ANN to

produce an hybrid FEM/ANN model. Training is carried out foreach 102 ANN composed of 2x20 neurons (34 nodes at
the interface).

In order to validate the procedure proposed, we compare the crash pulses resulting from the complete model and
hybrid model FEM/ANN on the tunnel for the chosen velocitiesin figure 15. The results are very satisfactory. It has to be
noticed that in a real experiment, the use of such hybrid FEM/ANN model allows a reduction of 15% of CPU time.
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Figure 15 – Crash pulses discrepancies between original and hybrid (roof ANN) model. Four velocities are
represented: V(1)

0 = 8 m/s (extrapolation) V(2)
0 = 12 m/s (learned) V(3)

0 = 14 m/s (interpolation) and V(4)
0 = 15 m/s

(learned).

CONCLUDING REMARKS

We have presented a strategy for the simplification of the automobile crash simulation by a coupled FEM/ANN ap-
proach. This approach is original and interesting since it makes possible to introduce a different precision level for some
model part without difficulty.

Since the ANN identifies structural parameters, its architecture is derived from physical laws (in nonlinear dynamics
equations form) for a system representing the simplified part. By using a simple nonlinear system, we have analyzed the
ANN ability for the reproduction of a significant nonlinear behavior and the connections between ANN design and the
quality of the results. Then, the approach has been applied to a complex situation, concerning a real crash simulation.

The results show the interest of coupling the FEM and the ANN.The FEM use for a detailed substructure makes
possible the preservation of the traditional design of thismodel part. The ANN is used to predict a temporal acceleration
sequence at the interface with the FEM detailed substructure. The initial results show that the hybrid FEM/ANN models
may represent an interesting alternative for crash test simulation of complex vehicle structures. Moreover, the ANN model
brings a speed of calculation and flexibility, with a promising possibility of generalization.

The results show also the influence of the network architecture, which has to be connected to the physical problem
under consideration. Nevertheless, in spite of the limits evoked (network size, training convergence, extrapolationsimu-
lation,...), the results emphasize that:

• The use of ANN in hybrid system FEM/ ANN has led to a significantgain in the computation time.

• The simulation experiments furnished positive results which show the interest of the approach and suggest an
exploration of the connection between identification of dynamic systems and ANN.

• The identification approach has made possible the generation of an algorithm, easily translatable to the ANN
framework.
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