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Abstract: Nowadays the use of mechanical non-linear devices to control the dynamic behavior of vibrating structures 
is increasing. Modern engineering applications use materials with non-linear properties such as springs, viscous, and 
Coulomb dampers, to reduce the structure vibration. The main objective of this paper is to study the vibration signals 
generated in a simulation of a vibratory system with non-linear stiffness using a non-linear signal analysis 
formulation. A two input and one output MISO model is proposed to represent the non-linear system dynamics. The 
global measured output is considered to be the sum of two outputs produced by one linear path associated in parallel 
with a non-linear path. This last path has a non-linear model that represents non-linear stiffness and another linear 
transfer function connected in series. Since the linear path is identified by traditional signal analysis, the non-linear 
function can be evaluated by using the global input/output relationships, and can be used to identify physical 
parameters of the non-linear stiffness. The input and output probability density functions and the coherence functions 
are used to quantify the system non-linear behavior. Simulations are conducted on a single degree of freedom system 
coupled to a cubic non-linear spring, to validate the non-linear model identified by the proposed methodology. 
Keywords: Non-linear systems, Signal analysis, Vibration. 

NOMENCLATURE  
p = probability density functions 

(PDF). 
x = global input of the non-linear 

MISO system. 
y = global output of the non-linear 

MISO system. 

hy = linear part of global output. 
v =output of the zero memory non-

linear system. 

vy = non-linear part of global output. 

u = output of the zero memory non-
linear system statically 
uncorrelated with x . 

uy = non-linear part of global output 

statically uncorrelated with . oy

oy = linear part of global output 

statically uncorrelated with . uy
S  = power spectral densities. 

H  = transfer function. 
L  = transfer function. 
A = transfer function. 

Greek Symbols 
γ  = coherence function. 
 

INTRODUCTION  
Physical parameters of the nonlinear system cannot be identified by traditional linear analysis since this technique 

implies that the probability density function (PDF) of the inputs and outputs should have the same nature, condition not 
verified by nonlinear systems. (Bendat, 1998) 

Volterra series theory can be used to represent nonlinear systems using sets of high order polynomial functions 
assembled in parallel. Bendat et al. (1992) proposed a new methodology that uses the well-known theory of multiple 
input/single output linear systems (MISO) modified to be applied to signal analysis of non-linear systems. Since the 
Volterra methodology is highly dependent on the probability density function of input signals, Bendat (1998) proposed 
a methodology that is independent of the PDF of the input signals and that produces results that are easy to interpret. 
This methodology is called nonlinear MISO signal analysis. 

The nonlinear signal analysis is based on the hypothesis that the nonlinear characteristics of the system are additive 
to its linear characteristics and that the nonlinear effects acting on one input produce instantaneous output.  
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Figure 1 - Nonlinear MISO systems block diagram. 

The nonlinear system represented in the Fig. 1 does not have limitations regarding the characteristics of the PDF of 
the signal input ( )x t , as imposed by Volterra models.(Bendat, 1998) 

To use this methodology a prior knowledge of the nonlinear function ( )g x  is required. As in the linear MISO 
theory, the system represented in the Fig. 2, does not impose any restrictions on the correlation level of the input signals 
( )x t  and , so the system can be represented by Fig. 2, where ( )v t ( )x t  and ( )u t  are uncorrelated. 

 

 

Figure 2 - Nonlinear MISO system with uncorrelated inputs. 

To the systems of the Fig. 1 and Fig. 2 the spectral densities, transfer and coherence functions are calculated by: 

 
( )

h h

2

2 2

y y

2
2

*

* * 1-

- * = * *

* *

o o

u u

v v

xv xy
xv uy vy xv xy o

xxxx

uy
y y o xx uu vv xv

uu

xy
o xx

xx

xy
y y vv xv

xx vv

S SL S S L S SS
SS H S S S A S

S
y y uu

H

H H A S H S S AS

S
S A S S S

γ

γ

= = −

= =

⎛ ⎞= =⎜ ⎟
⎝ ⎠

= =

S

=

=
 (1) 

The system presented by Fig. 1 and Fig. 2 have only one nonlinear function, however it should be noticed that this 
methodology can represent systems with more than one nonlinear behavior. In this case the nonlinear MISO system 
representing each nonlinear function is precede by a linear frequency response function (FRF), which represents the 
frequency dependency. The nonlinear MISO formulation permits an easy correlation of estimated parameters with 
physical properties of the assumed model of nonlinear systems. (Lepore et al., 2004) 

VIBRATORY SYSTEMS WITH NONLINEAR PROPERTIES 
The proposed methodology could be applied in two different cases of analysis: 

 

a) Analysis and identification of a non-linear system. 

b) Identification of the non-linear forces applied to a linear system. 

 

The case (a) consists in characterize the dynamical behavior of a vibratory system by means of the proposed 
methodology. This is the case of the several vibratory systems encountered in most common engineering applications. 
The case (b) consists of a signal treatment to be used when is necessary to measure non-linear forces using linear 
instrumentation devices. 
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These two cases cover a major part of non-linear problems in mechanical sciences and have significant scientific 
interest as demonstrated by the following research works, which are examples where the proposed methodology has 
direct application: Goge et al. (2005) identified 15 different types of non-linearities that were present as excitation of 
linear subsystems or even due non-linear behavior of the materials and structures. These forces were directly used in the 
proposed non-linear MISO analysis. Lepore et al. (2005) applied the non-linear MISO analysis to estimate the friction 
force in material wear tests. Leonard et al. (2001) used a non-linear formulation to represent the internal force produced 
in a cracked beam. Cveticanin (1998) used a non-linear formulation to represent the dynamical behavior of a variable 
mass rotor/fluid system. 

This non-linear signal analysis methodology is applied to the mechanical system shown in Fig. 3. The linear 
parameters m, c and k are, respectively, the mass, viscous damper and stiffness physical properties. A generic nonlinear 
device  is connected in parallel to the suspension, and an external force excites the system. The time domain 
mathematical model is presented in Eq. (2) and the correspondent frequency domain model in the Eq. (3) is obtained by 
taking the Fourier Transform of the Eq. (2). 

( )g x

 

Figure 3 - One degree of freedom mechanical system with a nonlinear device. 

 ( ) ( )mx cx kx ag x F t+ + + =  (2) 

 ( ) [ ] ( ) ( ) ( )( )F f H X f A f g x= + F  (3) 

The term ( )A f  represent the frequency dependencies of the nonlinear device and ( )( )g xF  is the Fourier 

transform of the nonlinear input as shown by Fig 1. Eq. (2) and Eq. (3) show that there is no restriction on the 

nature of nonlinear function 

( )v t

( )g x  and that the nonlinear and linear terms are additive, according MISO theory. 
(Bendat, 1998) 

The same procedure can be applied to systems with several degrees of freedom and several nonlinear effects without 
loss of generality. This formulation can be applied to identify the nonlinear force acting on a linear system, using the 
measured system response.  

The analyses of linear systems submitted to non-linear forces are of great interest to many fields of research, since in 
some real experiments the excitation force applied to the linear system is non-linear. 

A generic linear system excited by a nonlinear force is represented in Fig. 4 and its mathematical model is given by 
Eq. (4). 

 

 

Figure 4 - Linear system subjected to a nonlinear force. 
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 [ ] { } [ ] { } [ ] { } { }
1 1 1n x n x n x n xn x n n x n n x n

m x c x k x F+ + =
1
 (4) 

The vector { }F  includes the nonlinear forces. Using the same notation of Eq. (2) the nonlinear force can be written: 

 { } [ ] ( ){ }
1n x n xn x n

F A g x= −
1
 (5) 

Matrix [ ]A  is diagonal with non-zero elements only at the positions corresponding to the degrees of freedom where 

the nonlinear forces act. The same condition is verified for the vector ( ){ }
1nx

g x  where no null nonlinear functions exist 
only at each corresponding degree of freedom. Assuming that the system is connected to the inertial reference by a 
spring and damper, located at the degree of freedom “1”, representing for example, a load cell that connects this degree 
of freedom to the ground and produces  , Eq. (4) and Eq. (5) can be rewritten as follows. _load cellF

 
[ ] { } [ ] { } [ ] { } [ ] ( ){ } { }
{ } [ ] { } [ ] { }

_1 1 1 1

_ 1 1

load celln x n x n x n xn x n n x n n x n n x n

load cell n x n xn x n n x n

m x c x k x A g x F

F c x k x

′ ′+ + = − +

′′ ′′= − −
 (6) 

Where: 
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 [ ] { } [ ] { } [ ] { } [ ] ( ){ } { }_1 1 1 1 load celln x n x n x n xn x n n x n n x n n x n
m x c x k x A g x F′ ′+ + + =  (8) 

The frequency domain representation of the linear system, subjected to nonlinear forces, is finally obtained by 
taking the Fourier transform on both sides of Eq.(8). 

 ( ){ } ( )[ ] ( ){ } ( )[ ] ( )( ){ }_ 11load cell kn x n xn x n n x nn x
F f H f X f A f g x′= + F

1
 (9) 

Using Eq.(9) and the concept presented in Fig. 1, the correct representation of a MISO system with nonlinear 
excitation force is constructed. 

 

 

Figure 5 - MISO system used to indirectly determine the nonlinear force. 

Matrix [ ]H  is replaced by matrix [ ]H ′  to represent the FRF of the system in Fig.4 with the terms and  
removed from stiffness and damping matrix and transferred to the right side of Eq.(8). These are representing the force 
measured by the load cell. It should be noted that the force measured by the load cell includes the linear component 

1k 1c
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h hy yS and the nonlinear component . Moreover, to obtain the true nonlinear force, by means of nonlinear MISO 

signal analysis, a prior knowledge of nonlinear function 
v vy yS

( )g x is required. 

STATISTICAL METHODOLOGY TO IDENTIFY NON-LINEAR FUNCTIONS 
Bendat (1998) affirms that the following statements, related to the system represented in Fig. 6, are true: 

 

a) When  is Gaussian and ( )p x ( )g x  is linear, then the resulting ( )2p y  will be Gaussian. 

b) When  is Gaussian and ( )p x ( )g x  is non-linear, then the resulting ( )2p y  will be non-Gaussian. 

 

Figure 6 – Zero memory non-linear system 

Therefore, the non-linear behavior of the system can be verified comparing the probability density functions of the 
input with that of the output. 

Additionally, if the non-linear function ( )g x  is a single-valued and one-to-one function, it can be determined by 

setting the probability distribution function ( )2P y  equal to the ( )P x  and the relation between the probability 
distribution functions of input and output is written in Eq. (10). (Bendat, 1998)  

  (10) ( ) ( ) ( ) ( )2 0 2 0

0 0y x

P y p y dy p x dx P x
−∞ −∞

= = =∫ ∫

Equation (10) is calculated with each value of 0x  determining the ( )0P x  from the measured . The value  

is determined from measured , since 

( )p x 0y

( )2p y ( ) ( )2 0 0P y P x=  this procedure will produce the variable pair ( )0 0,x y  

that is the representation of . A schematic representation of the suggested procedure to identify the non-

linear function  is shown in Fig.7, where the horizontal red line represents the equal probability of occurrence 

of the input 

( )0y g x= 0

( )y g x=

ix  and of the output . The procedure is done for all probability values from zero (at the bottom 
of the graphic) to one. (at top of the graphic), resulting a set of ordered input and output values that are the numerical 
estimation of non-linear function . 

( )iy g x= i

( )y g x=

 

Figure 7 – Representative diagram of Eq. (10) 

The two statements presented by Bendat (1998) are useful to identify the presence of a non-linearity in the vibratory 
system. However, sometimes the methodology presented in Fig. 7 and in the Eq. (10) could be not directly applied to 
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real systems. Generally in these systems is not possible measure directly the effects of non-linearity, since the theorem 
shown in the Eq. (10) can be applied only to the measured global input, represented by ( )x t , and to the measured 

global output, represented by  as shown in the Fig. 1. In this case the system of Fig. 1 is not a zero-memory non-
linear system, which is an important condition imposed by Bendat (1998). 

( )y t

In this paper, it is shown that the theorem presented in Eq. (10) can be applied using the global input and global 
output of the non-linear system as present in Fig. 1. However the estimated function is useful only to separate the non-
linear parts from the linear parts, represent by  and , and this procedure does not allow to reconstruct the non-
linear function, as proposed by Bendat (1998). The application of Eq.(10) using the measured global input and output 
remains useful to identify the linear path of the system, to separate the linear and non-linear parts of the global output. 
These characteristics are presented in the following section. 

hy vy

NUMERICAL SIMULATIONS AND RESULTS 
A model of a single degree linear vibratory system coupled to a non-linear spring was studied. Two separated cases 

of cubic spring were simulated: one has hardening spring and the other has a softening spring. The imposed excitation 
force is a zero mean white noise with RMS amplitude equal to 10 N. The Runge-Kutta method was used to integrate the 
system non-linear equation of motion, using a 0.5 milliseconds time step, so that there are at least 100 sampled points in 
each natural period of the linear system. Figure 8 shows the physical model of the vibratory system, the values of its 
linear parameters, and the behavior of the non-linear spring, which were used in all computational simulations. 

A first simulation of the linear vibratory system without the non-linear function was done to obtain its the linear 
response to be used as reference. The methodology shown in Fig. 1, Fig. 2 and in the Eq. (1) was applied with the 
functions ( )g x  described in Fig. 8 and also with the function ( )g x  estimated by the application of the Eq. (10) using 

the global input ( )x t  and the global output ( )y t . The numerical results are compared using the estimated linear 
transfer functions (TF), the cumulative coherence functions, the power spectral density of the linear part of the global 
output and the power spectral density of the non-linear part of the global output. 

 

 

Figure 8 – Non-linear vibratory system. 

Figure 9 and Fig. 10 respectively show the numerical results of the non-linear system with a hardening cubic spring 
and a softening cubic spring. In these figures were considered as exact non-linear functions the functions ( )g x  
represented in Fig. 8. The power spectral densities were calculated using the PWELCH methodology, as show in Press 
et al. (1992), with samples of 1024 data points. The hanning window was used to reduce leakage error and the power 
spectral density functions were calculated by averaging 40 samples. 
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Figure 9 – Simulations results of a linear system with a hardening cubic spring. 

It can be seen in the left upper corners of Fig. 9 and Fig. 10 that the estimated linear systems transfer functions are 
very close to the reference TF calculated for the linear system, regardless the type of used non-linear spring. This result 
indicates that the proposed methodology is capable to precisely identify the linear system path. 

The same conclusions are valid for the power density functions of the linear and the non-linear paths estimated 
by the proposed methodology, shown at the bottom of Fig. 9 and Fig. 10. The non-linear analysis performed with the 
non-linear function estimated by the MISO methodology produce results very close to those calculated with the exact 
non-linear function. Therefore it is possible to assume that the non-linear path, defined by the product of

( )y t

( )g x  by 

( )A f , is correct. But, it should be noted that the estimated non-linear function using Eq. (10) with the global input and 

output of the non-linear vibratory system is not the same ( )g x  function used in the simulations. This is due to the 

difference between the probability functions of ( )y t  and the probability function of the output of the zero memory 
non-linear system, since the hypothesis of a zero memory non-linear, as supposed by Bendat (1998), is not verified in 
this case. This result indicates that the estimated non-linear function is responsible only to provide the nature of the non-
linearity to the input ( )x t  and that ( )A f  adjusts the gain and the time delay, in such way that the estimated output is 
coincident with that output produced by the exact model. 

An exact mathematical proof of this theory is out of the scope of this paper and will be studied in the future. 
However the hypothesis that only the non-linear function changes the nature of the probability density functions (PDF) 
of the output, when compared with the input PDF, provides an initial support to the non-linear MISO analysis that uses 
the global measured input and output, without the assumption of a zero-memory model at the non-linear path. 

Therefore it is expected that the estimated non-linear function, using the Eq. (10) with the global input and output, is 
capable to represent the non-linearity nature providing a good identification of the non-linear path in the MISO analysis. 
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Figure 10 – Simulations results of a linear system with a softening cubic spring. 

As shown in the graphs at the right upper corners of Fig. 9 and Fig. 10, the cumulative coherence functions 
calculated with the exact and with the estimated non-linear functions are coincident, and have values near unity along 
the analysis frequency band. These good correlations as well as those between the transfer functions (TF) are indicative 
of the good estimative of the parameters in the non-linear MISO models.  

The cumulative coherence functions have lower values around the natural frequency of the linear system. These 
reductions may be caused by the 2 Hz frequency resolution used in the simulations, and by the adopted estimator of the 
ordinary coherence functions. According to Bendat & Piersol (1986) the estimator used to calculate the coherence 
functions has bias error and under-estimates the real one. This bias error is proportional to the square of the relation 
between the physical time delays, imposed by the system transfer function, and the acquisition total time. Therefore to 
reduce this error the solution is to increase the total acquisition time, which is proportional to the sample length used to 
estimate the auto spectral and the cross spectral densities. 

Figure 11 and Fig. 12 compare the transfer function and coherence functions obtained by the proposed non-linear 
MISO analysis and by traditional linear analysis, applied to the same mechanical system with the hardening and 
softening cubic springs. 

The main differences between transfer functions calculated by the both methodologies are in the region near the 
natural frequency. This can be explained by the large displacement of moving mass of the system in the Fig. 8, in these 
frequency bands. Due to the stiffness cubic behavior, large displacement amplitudes increase the non-linear part of the 
system response in the measured global system response, promoting a significant difference between the TF estimated 
by both methodologies. The same analysis could be based on the graphic of the Fig. 8 where is verified that the 
difference between the linear spring and the non-linear springs are greater at larger displacements ( )x t . 
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Figure 11 – Comparison between estimated transfer functions.  

 

The coherence functions shown in Fig. 12 have the same behavior verified in Fig. 11 in the regions near the natural 
frequency. Outside this frequency band the coherence functions obtained with the non-linear analysis show that the non-
linear frequency analysis provides a better estimative of linear system transfer function. Higher differences can be 
expected in experimental tests of a real vibratory system, since in these simulations the noise is only due to numerical 
errors and in real cases the noise captured by the instrumentation is always present. 

 

Figure 12 – Comparison between coherences functions. 

CONCLUSIONS AND FUTURE WORKS 
The analysis and interpretation of nonlinear behavior that occurs in a mechanical system is feasible by the usage of 

nonlinear MISO technique. The proposed methodology is useful to identify nonlinear effects that act on linear system 
without restrictions on the statistical nature of the measured signals. If the nonlinear behavior is well modeled, the 
proposed methodology is capable to identify and separate the exact nonlinear part from the global response of the 
system. 
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An alternative methodology to identify the non-linear path in the MISO models was proposed. This methodology is 
capable to estimate a non-linear function. This methodology when used in the non-linear MISO analysis produced the 
same results obtained with the exact form of the non-linear function. However a detailed mathematical study should be 
done to validate this assumption. 

In case of mechanical systems with known linear properties the MISO representation is simple and easy to be 
physically interpreted than by other nonlinear analysis techniques. Since the methodology does not impose any 
restrictions on the nature of the nonlinear function, it finds usefulness in the identification of physical parameters of 
highly nonlinear mechanical systems. 

A group of experiments in a well know non-linear test rig should be carried out. These experiments are in order to 
verify the performance of the both proposed methodology to analyze real systems.  
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