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Abstract: We present a differential-algebraic model for gas-liquid flows in pipe-riser system which takes into account the
pipe partial flooding with liquid and the gas cavity formation at the top of the riser that may occur during hydrodynamic
instabilities, like severe slugging. We present an asymptotic theory that leads to the Landau equation as the evolution
equation for the amplitude of the unstable modes that characterize the instabilities in this type of systems. As a by
product, we obtain a stability criteria for steady gas-liquid flows in pipe-riser systems.
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INTRODUCTION

Under certain conditions, a steady two-phase flow with constant gas and liquid mass flow rates does not exists in pipe-
riser systems, and intermittent flow regimes are observed. Whenever a sub-sea pipeline ends at a vertical riser connected
to a platform separator, liquid may accumulate at the base of the riser and stop the gas motion. When this happens, the
upstream gas is being compressed and its pressure rises while the liquid accumulates at both riser and pipeline. This
situation continues until the gas pressure is large enough to push the liquid slug out of the pipeline and to start gas
penetration into the riser. At this point different scenarios may happen. If the liquid slug pushed by the gas did not fill
in the whole riser, gas bubbles penetrate into the riser, decreasing the pressure along the riser and making the gas-liquid
mixture to flow out of the riser. The gas pressure in the pipeline decreases until the gas passage at the base of the riser
is blocked again by the liquid and the repetitive cycle (limit cycle) starts again. If the liquid slug pushed by the gas has
already filled in the riser, the separator has been only seeing liquid by the time the gas is able to push the liquid slug out of
the pipeline. The gas pressure at the pipeline reached its maximum when bubble penetration into the riser had started. The
bubble penetration stage is characterized by a rapidly expanding gas bubble that continuously overruns the riser liquid
and leaves a thin film along the riser wall. This stage continues until the bubble enters the separator as a gas burst. This
point is the start of the gas blowdown stage. During this stage, the gas inventory in the pipeline decreases steadily with
a corresponding rapid decrease in pipeline pressure. At some point, the gas velocity in the riser becomes insufficient to
support liquid on the riser wall, what marks the end of the gas blowdown stage and the beginning of the "liquid fallback"
stage. During this stage, the gas passage is blocked,and a gas cavity is formed above the liquid accumulated at the bottom
of the riser, and the repetitive cycle (limit cycle) starts again. The last of the instabilities described above is known as
severe slugging phenomenon in the literature.

The cyclic behavior observed in the hydrodynamic instabilities in the pipe-riser systems suggests that the lost of
stability is associated with a supercritical Hopf bifurcation, as reported in Zakarian (2000). According to the literature
(see Aranha 2004), the Landau equation is a model equation for the scenario just described (i.e, lost of stability through a
supercritical Hopf bifurcation leading to a limit cycle).

The objective of this work is to obtain the Landau equation from the governing equation for two-phase flows in a
pipe-riser system. The Landau equation coefficientsσ andµ are obtained directly from the governing equations. In the
process of deriving the Landau equation as an evolution equation for the instabilities in the two-phase flows in pipe-riser
systems, we also derived a stability criteria for steady two-phase flows in pipe-riser systems.

The model developed here is an improvement over the model presented in Zakarian (2000), since it takes into account
the possibility of partial pipe flooding and the formation of gas cavity at the top of the riser, which happens in the case of
severe slugging phenomenon.

In the next section, we present the model used for two-phase flows in a pipe-riser system and the associated governing
equations in terms of non-dimensional variables. In the third section and in its subsections, we present the asymptotic
analysis of the system non-dimensional governing equations, which leads to the Landau equation as the evolution equation
for the pair of unstable modes associated with the Hopf Bifurcation. As a side product of the asymptotic analysis, a
stability criteria for the steady gas-liquid flow in pipe-riser systems is presented in the fourth section. In the fifth section,
we present our discussion and conclusions.
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Figure 1 – Part (A) - First configuration: x = 0 and no gas cavity. Part (B) - Second configuration: x > 0 and no gas
cavity. Part (C) - Third configuration: x > 0 and gas cavity. Part (D) - Fourth configuration: x = 0 and gas cavity.

TWO-PHASE FLOW MODEL.

The pipe-riser system is composed basically of two parts. The pipe plus a gas buffer and the riser. The pipe and riser
are connected at the base of the riser. The pressure at the top of the riser is assumed to be the atmospheric pressure and
we have liquid and gas mass flowing into the pipe (see figure 1).

The gas-liquid flow in the pipe is assumed as always stratified. This flow behavior extends either to the whole pipe (see
parts (A) and (D) of figure 1) or it extends until the liquid penetration position in the pipe (see parts (B) and (C) of figure
1). The first configuration corresponds to continuous gas flow from the pipe into the riser and the second configuration
corresponds to no gas flow from the pipe into the riser and partial liquid flooding of the pipe.Ql0, ṁg0, β , L, g andx
illustrated in figure 1 represents, respectively, the volumetric flow rate of liquid into the pipe, the gas mass flow rate into
the pipe, the pipe inclination angle, the distance of the liquid inlet from the base of the riser, the gravity acceleration
constant and the pipe liquid flooding distance from the base of the riser (parts (B) and (C) of figure 1).

We consider an isothermal drift-flux model assuming quasi-equilibrium momentum balance for the two-phase flow in
the riser. For the riser we consider two configurations. The riser is either filled with the gas-liquid mixture (see parts (A)
and (B) of figure 1) or it may have an interface separating the gas-liquid mixture from a gas cavity located at the top of the
riser.su represents, when it exists, the position of the liquid-gas interface in the riser with respect to the base of the riser.

Therefore, we have a total of four different configurations. The first (fourth) configuration is illustrated in part (A)
(part (D)) of figure 1. In this configuration we have stratified flow in the pipe and continuous gas penetration from the
pipe into the riser and the riser is totally (partially) filled with the gas-liquid mixture. The second (third) configuration is
illustrated in part (B) (part (C)) of figure 1, where we have stratified flow in part of the pipe with liquid flooding until a
distancex from the base of the riser, which is totally (partially) filled with the gas-liquid mixture. In the fourth and third
configurations we have a gas cavity at the top of the riser.

The set of governing equations is not the same for the four different configurations represented in figure 1. Below we
give governing equations for the different configurations illustrated in figure 1.

Governing Equations for the Pipe-riser System.

We give the governing equations for the pipe-riser system in non-dimensional form. We define the following non-
dimensional variables according to the set of equations below.



K. P. Burr, J. L. Baliño

x∗ =
x
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, (1)

s∗ =
s
Lr

, (2)

P∗ =
P
Pt

, (3)
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A

Ql0
, (4)

t∗ =t
Ql0

ALr
, (5)

ṁ∗ =ṁ
RgTg

Ql0Pt
, (6)

m∗ =
RgTg

LrPt
m (7)

whereLr is the riser length,A is the cross-sectional area of the pipe and riser,Pt is the pressure at the top of the riser which
is equal to the atmospheric pressure,s is the space parameterization along the riser length,Tg is the absolute temperature
of the gas,ρg is the gas density,Rg is the gas constant,j stands for superficial velocity,̇m stands for mass flow rate,P
stands for pressure,m stands for mass andt stands for time. The variables with * as a superscript are non-dimensional
variables.

Pipe Governing Equations.

We first give the non-dimensional governing equation for the pipe. We consider the gas in the pipe behaving as a
pressure cavity at non-dimensional pressureP∗g , constant in position and evolving isothermically as a perfect gas. We
consider a fixed control volume with the pipe and gas buffer contours as the control volume surface. For this control
volume, we obtain the mass conservation equation for each of the two phases. We have to consider two different situation
at the pipe. We have either continuous gas penetration from the pipe into the riser (x∗ = 0) or partial liquid flooding of the
pipe (x∗ > 0).

Below follows the governing equations for the pipe for the conditionsx∗ > 0 andx∗ = 0. We start with the equations
for the case wherex∗ > 0. The mass conservation equation for the liquid phase is

−(δ −x∗)
dαp

dt∗
+αp

dx∗

dt∗
+ j∗lb−1 = 0, (8)

whereδ = L/Lr . αp is the pipe void fraction andj∗lb is the non-dimensional liquid phase superficial velocity at the base
of the riser. The mass conservation equation for the gas phase is

[(δ −x∗)αp +δb]
dP∗g
dt∗

+P∗g (δ −x∗)
dαp

dt∗
−αpP∗g

dx∗

dt∗
− ṁ∗

g0 = 0, (9)

where we used the perfect gas relationPg = ρgRgTg. δb = Vb/(ALr) is the non-dimensional length equivalent to the gas
buffer volumeVb divided by the product of the pipe cross sectional areaA by the riser length. We consider variations of
pressure in the pipe only due to hydrostatic effects. Then, the momentum equation is

P∗g = P∗b +Πsx
∗ sin(β ), (10)

whereP∗b is the non-dimensional pressure at the base of the riser and the non-dimensional numberΠs is given by the
equation

Πs =
ρl gLr

Pt
. (11)

This non-dimensional number is the ratio between the hydrostatic pressure at the base of the riser when it is filled
completely with liquid and the atmospheric pressure.

We can eliminate the gas non-dimensional pressureP∗g in favor of the riser base non-dimensional pressureP∗b , by using
the equation (10). Then the liquid phase mass conservation equation is not affected, but the gas phase mass conservation
equation assumes the form

[(δ −x∗)αp +δb]
(

dP∗b
dt∗

+Πssin(β )
dx∗

dt∗

)
+(P∗b +Πsx

∗ sin(β ))
[
(δ −x∗)

dαp

dt∗
−αp

dx∗

dt∗

]
− ṁ∗

g0 = 0 (12)

Next, we present the equations for the casex∗ = 0. The liquid phase mass conservation equation is

−δ
dαp

dt∗
+ j∗lb−1 = 0. (13)

Notice that in this case, the gas non-dimensional pressureP∗g is equal to the non-dimensional pressure at the base of
the riser. Then, we use the riser base non-dimensional pressureP∗b instead of the gas non-dimensional pressureP∗g in the
gas phase mass conservation equation, which is
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(δαp +δb)
dP∗b
dt∗

+δP∗b
dαp

dt∗
+P∗b j∗gb− ṁ∗

g0 = 0, (14)

where j∗gb is the gas non-dimensional superficial velocity at the base of the riser.

To close the model for the pipe, we use an implicit algebraic relation for the pipe void fractionαp which relates it
with the non-dimensional gas superficial velocity at the base of the riserj∗gb, with the non-dimensional liquid superficial
velocity at the base of the riserj∗lb and with the non-dimensional gas pressureP∗g , and is derived from local momentum
equilibrium for each phase of a stratified flow in a pipe (Yemada and Dukler 1976, Kokal and Stanislav 1989 and others).
For the casex∗ = 0 we write

Ap(αp, j∗lb, j∗gb,P
∗
b ) = 0, (15)

since in this caseP∗b = P∗g . For the conditionx∗ > 0 we write the algebraic relation forαp as

Ap(αp, j∗lb,x
∗,P∗b ,

dx∗

dt∗
) = 0. (16)

Equations for the Riser.

For the riser, non-dimensional equations are derived from the space integration of an isothermal drift-flux model
assuming quasi-equilibrium momentum balance for the two-phase flow in the riser. The mass conservation equation for
the liquid phase is

dm∗l
dt∗

+Λs( j∗lu− j∗lb) = 0, (17)

where j∗lu is the non-dimensional liquid superficial velocity at the liquid-gas interface bounding below the gas cavity at
the top of the riser when this exists, or it is the non-dimensional superficial velocity of the liquid at the top of the riser.m∗

l
is the non-dimensional mass of liquid inside the riser and it is given by the equation

m∗
l =

∫ s∗u

0
Λs(1−αr)ds∗, (18)

wheres∗ is the non-dimensional space parameterization (vertical direction) andαr is the void fraction along the riser. The
non-dimensional numberΛs is defined by the equation

Λs =
ρl RgTg

Pt
, (19)

and is the ratio between the gas compressibility pressure and the atmospheric pressure.

The mass conservation equation for the gas phase is

dm∗g
dt∗

+P∗u j∗gu−P∗b j∗gb = 0, (20)

whereP∗u and j∗gu are, respectively, the non-dimensional pressure and the non-dimensional gas superficial velocity at the
liquid-gas interface when this exists, or they are the non-dimensional pressure and the non-dimensional gas superficial
velocity at the top of the riser.m∗

g is the non-dimensional mass of gas in the gas-liquid mixture filling the riser. It is given
by the equation

m∗
g =

∫ s∗u

0
P∗(s∗)αrds∗, (21)

whereP∗(s∗) is the non-dimensional pressure along the riser.

We assume the inertia and frictional forces small and neglect them. We consider pressure variation only due to the
hydrostatic force. The linear momentum equation is

P∗u −P∗b =−Πs

Λs
[m∗

l +m∗
g]sinθ , (22)
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whereθ is the riser inclination angle with respect to the vertical direction.

We consider the constitutive law corresponding to the drift flux model (Zuber and Findlay 1965) to relate the void
fraction along the riser with the local values of the gas and liquid non-dimensional superficial velocities. At the base of
the riser we have the relation

(1−Cdαrb) j∗gb = αrb[Cd( j∗lb + j∗gb)+U∗
d ], (23)

whereαrb is the void fraction at the base of the riser. At the liquid-gas interface, when it exists, or at the top of the riser
we have the relation

(1−Cdαru) j∗gu = αru[Cd( j∗lu + j∗gu)+U∗
d ], (24)

whereαru is the void fraction at positions∗u (liquid-gas interface when it exists or top of the riser). For the drift flux
coefficientsCd andU∗

d we use the following correlation based on experimental data (Bendiksen 1984)

Cd =

{
1,05+0,15sinθ for | j∗|< 3,5

√
gDA
Ql0

1,2 for | j∗| ≥ 3,5
√

gDA
Ql0

(25)

U∗
d =

{ √
gDA
Ql0

(0,35sinθ +0,54cosθ) for | j∗|< 3,5
√

gDA
Ql0

0,35
√

gDA
Ql0

sinθ for | j∗| ≥ 3,5
√

gDA
Ql0

(26)

whereD is the pipe and riser diameter and| j∗|= | j∗lb + j∗gb| at the base of the riser or| j∗|= | j∗lu + j∗gu| at positions∗u. Other
correlations based on experimental data are given by (Chexalet al. 1992).

The liquid-gas interface located ats∗u appears whenever the liquid superficial velocity becomes zero at the top of the
riser. The equation fors∗u is

(1−αru)
dsu

dt
= j lu. (27)

Notice that this equation comes to play only in the third and fourth configurations defined previously. In order for
the set of equations to match the number of dependent variables, we need two additional equations. We assume the void
fraction along the riser to vary linearly with the space parameterization. Equation (18) for the non-dimensional mass of
liquid in the pipe assumes the form

m∗
l =

1
2

Λss
∗
u[2−αru−αrb]. (28)

Equation (21) for the non-dimensional mass of gas in the gas-liquid mixture assume the form

m∗
g =

1
2

s∗u[P
∗
u αru +P∗b αrb], (29)

where it is implicit the assumption of perfect gas.

Not all equations above are valid for the four configurations defined previously and illustrated in figure 1. In Tab 1 we
define which equations are the governing equations for each configuration and which dependent variables are used.

Table 1 – Necessary governing equations and variables for each configuration defined in figure 1.

Configuration Governing Equations Dependent variables
1st (13)-(15), (17), (20), (22)-(24), (28), (29) αp, j∗lb, j∗gb,P

∗
b ,αrb, j∗lu, j∗gu,m

∗
l ,m

∗
g,s

∗
u = s∗t , P∗u = P∗t

2nd (8), (12), (16), (17), (20), (22)-(24), (28), (29)αp,x∗, j∗lb, j∗gb = αrb = 0,P∗b , j∗lu, j∗gu,m
∗
l ,m

∗
g,s

∗
u = s∗t , P∗u = P∗t

3rd (8), (12), (16), (17), (20), (22)-(24), (27)-(29) αp,x∗, j∗lb, j∗gb = αrb = 0,P∗b , j∗lu, j∗gu,m
∗
l ,m

∗
g,s

∗
u, P∗u = P∗t

4th (13)-(15), (17), (20), (22)-(24), (28)-(29) αp, j∗lb, j∗gb,P
∗
b ,αrb, j∗lu, j∗gu,m

∗
l ,m

∗
g,s

∗
u, P∗u = P∗t

Next, we have to describe when we switch from one configuration to another, or from one set of equations to an-
other. Table 2 illustrate the conditions characterizing each configuration and the conditions to switch from the current
configuration.
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Table 2 – Characterization and switching conditions among configurations and correspondent set of equations.

Configuration Characterized by Switch from when
Frist x∗ = 0, j∗gb 6= 0,αrb 6= 0 ands∗u = s∗t , j∗lu > 0 j∗gb→ 0,αrb → 0,x∗ > 0 or j∗lu < 0

Second x∗ > 0, j∗gb = 0,αrb = 0 ands∗u = s∗t , j∗lu > 0 j∗gb > 0,αrb > 0,x∗→ 0 or j∗lu < 0
Third x∗ > 0, j∗gb = 0,αrb = 0 ands∗u < s∗t j∗gb > 0,αrb > 0,x∗→ 0 or s∗u → s∗t
Fourth x∗ = 0, j∗gb > 0,αrb > 0 ands∗u = s∗t , j∗lu > 0 j∗gb→ 0,αrb → 0,x∗ > 0 or s∗u → s∗t

The boundary conditions are the pressurePt at the top of the riser which is the atmospheric pressure, the gas mass flow
rateṁgo and the liquid volumetric flow rateQl0 (see figure 1 for details). The boundary condition at the top of the riser in
non-dimensional form isP∗t = 1.

ASYMPTOTIC THEORY.

For ranges of the pipe-riser system parameters there exists stable gas-liquid flows. Changes in the system parameters
may lead to the lost of stability of the previously stable steady state gas-liquid flows. This lost of stability give rise to
hydrodynamic instabilities characterized by limit cycles according to experiments reported in the literature. This type of
behavior is typical of a supercritical Hopf bifurcation. The evolution equation associated with instabilities which arise
from a supercritical Hopf bifurcation is of the Landau equation type.

In the linear stability analysis of a given steady state gas-liquid flow, we write the variables as their steady state values
plus a perturbation and substitute them into the system governing equations. As a result, we obtain the perturbation
governing equations. We keep only the linear terms in the governing equations for the perturbation variables and obtain a
system of algebraic and differential equations. We reduce the number of variables using the algebraic equations and obtain
a set of only linear differential equations. We assume the solution of the formvexp(λ t), and the system of differential
equation reduces to the eigenvalue problem

(K +λM)v = 0 (30)

The linear stability of the steady state is dictated by the spectrum of the eigenvalue problem above. If all eigenvalues
λ j = σ j + iω j haveσ j < 0, the steady state is stable since the solution decays exponentially in time. In the case of the
Hopf bifurcation, two complex conjugate eigenvalues cross the imaginary axis, and their real part become positive, and
the perturbations of the steady state grows in time. As the perturbations grow, nonlinearity becomes important and it may
bound the exponential growth of the two unstable eigenmodes, leading to a limit cycle. For system parameter values close
to their critical values, the real partσ of the pair of complex conjugate eigenvalues which crossed the imaginary axis is
small, and under such condition we developed an asymptotic theory which gives Landau equation

dA
dt
−σA(t)+ µ |A(t)|2A(t) = 0 (31)

as the evolution equation for the amplitudeA(t) of the two complex conjugate unstable eigenmodes associated with the
pair of complex conjugate eigenvalues with positive real partσ . The asymptotic theory furnishes the Landau equation
coefficientsσ andµ in terms of the steady state variables. The coefficientσ is the real and positive as implied above.
For real and positive (negative)σ , the linear part of equation (31) implies an exponentially growth (decay) with time for
A(t) at a growth (decay) rateσ . The coefficientµ is in general complex, and if its real part is positive, the nonlinearity in
equation (31) bounds the exponential growth of the linear part leading to a limit cycle, with amplitudeAc and frequency
ωc given by

Ac =
√

σ
ℜ{µ} ∼O(σ1/2), (32) ωc = ω− ℜ{µ}

ℑ{µ}σ , (33)

whereω is the modulus of the imaginary part of the pair of complex conjugate eigenvalues with positive real partσ .
ℜ{µ} andℑ{µ} are, respectively, the real and imaginary parts ofµ. If ℜ{µ} is negative, the nonlinear term in equation
(31) does not bound the growth ofA(t) for positiveσ and there is no limit cycle type of solution forA(t).

Since we have four different configurations (set of equations) in the model for two-phase flows in pipe-riser systems,
we need to obtain four different expressions for the Landau equation coefficientsσ andµ, one set for each configuration.
We do this only for the first configuration, since the procedure for the other three set of equations is similar. The first step
in the development of the asymptotic theory is to obtain the steady gas-liquid flow that is stable for some range of values
of the system parameters.

Since we are working only with non-dimensional variables, and for simplicity, from now on we omit the superscript *
from the equations.
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Steady State

We consider the equations for the first configuration (see Tab. 1) to obtain the steady state. The equations which give a
steady state for the first configuration are the set of equations specified in Tab. 1, but with the time derivatives set to zero.
From equation (13) the steady sate superficial velocityj lb,0 is given by

j lb,0 = 1, (34)

and from equation (17) it follows that the steady state superficial velocityj lu,0 = j lb,0 = 1. From equations (14) and (18)
we conclude that

Pu,0 jgu,0 = Pb,0 jgb,0 = ṁg0, (35)

wherePu,0 andPb,0 are, respectively, the steady state pressure at the top and base of the riser, andjgu,0 and jgb,0 are,
respectively, the steady state gas superficial velocities at the top and base of the riser. The pressurePu,0 = Pt = 1, since it
is a boundary condition. Then from equation (35) we can write thatjgu,0 = ṁg0.

Since j lu,0 = 1 and jgu,0 = ṁg0, the drift relation at the top of the riser gives the steady state void fractionαru,0 at the
top of the riser as

αru,0 =
ṁg0

Cd(ṁg0 +1)+Ud,t
, (36)

whereUd,t specifiesUd, given by equation (26), at the top of the riser.

With equations (34) and (35), the drift relation at the base of the riser (equation (23)) gives the steady state void
fractionαrb,0 at the base of the riser in terms ofjgb,0 as

αrb,0 =
jgb,0

Cd( jgb,0 +1)+Ud,b
, (37)

whereUd,b specifiesUd at the base of the riser. We substitutePu = Pt = 1,Pb = jgb,0/ṁg0 andαrb,0 given by equation (37)
into equations (28) and (29), which give expressions for the liquid steady state massml ,0 and the gas steady state mass
mg,0 in terms of jgb,0,αru,0 andṁg0. Then, we substitute these expressions into the equation (22) to obtain a second order
algebraic equation forjgb,0. The roots are

jgb,0 =− B1

2B2
∓ 1

2B2

√
B2

1−4B0B2, (38)

where we define

B0 =− ṁg0(Cd +Ud,b), (39)

B1 =sin(θ)stΠs

{
αru,0

(
1

2Λs
− 1

2

)
(Ud,b +Cd)+

ṁg0

2Λs
+Cd +Ud,b

}
− ṁg0Cd, (40)

B2 =sin(θ)stΠs

{
αru,0Cd

(
1

2Λs
− 1

2

)
+Cd−1

}
+Cd. (41)

Now, we have to decide which root to use or if each of these roots define a different steady state. Taking the limit

ṁg0 → 0, we have thatB0 → 0, −B1/(2B2)−
√

B2
1−4B0B2/(2B2)→−B1/B2 (B1 6= 0 andB2 6= 0) and−B1/(2B2)+√

B2
1−4B0B2/(2B2)→ 0. As the gas mass flow rate coming into the pipe goes to zero, we expect thejgb,0 to go to zero.

Therefore, the physical steady state is given by the positive sign in the equation (38) forjgb,0. With the expression for
jgb,0 in terms of the system parameters (positive sign in equation (38)), we use equations (37), (28) and (29), respectively,
to obtainαrb,0,ml ,0 andmg,0 in terms of the system parameters. The steady state value for the pipe void fractionαp,0 is
obtained by substitutingj lb,0, jgb,0 andPb,0 into the implicit equation (15).

The other three configurations illustrated in figure 1 do not have steady states. As we try to solve the equations (given
in Tab 1, but with the time derivatives set to zero) to obtain the steady state for the other configurations, we run into
inconsistencies. For example, for the fourth configuration, equations (13) and (17) givej lu = 1, but for equation (27)
to be satisfied, we needj lu = 0, which is an inconsistency. This is not a surprise, since the second, third and fourth
configurations exist only during stages of the intermittent regimes described above.
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Governing Equations for the Perturbations Variables.

The steady state obtained in the previous section may be stable or not, depending on the values of the system param-
eters. To determine the range of the system parameters for which the steady state obtained above is stable or not, we
perform a linear stability analysis. The first step would be to write the system variables as their steady state values plus
a perturbation which is given as a series expansion in the parameterε, whereε = σ1/2 (order of magnitude of the limit
cycle amplitude, see equation (32)) and we assumeε << 1.

We write a series expansion for the perturbation variables in terms of the parameterε in the form

α(t) =
∞

∑
n=1

εnαn(t,τ), (42)

j(t) =
∞

∑
n=1

εn jn(t,τ), (43)

x(t) =
∞

∑
n=1

εnxn(t,τ), (44)

m(t) =
∞

∑
n=1

εnmn(t,τ), (45)

Pb(t) =
∞

∑
n=1

εnPb,n(t,τ), (46)

su(t) =
∞

∑
n=1

εnsu,n(t,τ), (47)

whereα(t) stands for the void fractionsαp(t),αrb(t) andαru(t), j(t) stands for the superficial velocitiesj lb(t), j lu(t), jgb(t)
and jgu(t) andm(t) stands for the liquid and gas massesml (t) andmg(t). We use the two-scale method. We assume that
the terms in the expansions above are functions of the time scaleτ = ε2t. Now we substitute the variables in the alge-
braic equations (15), (22), (23), (24), (28) and (29) by their steady state value plus their perturbation variables given by
the equations (42)-(47). Then, we collect terms of the same order inε. As a result, we obtain the system of algebraic
equations

Avk = fk , k = 1,2,3, . . . , (48)

wherevk
T = {αp,k(t,τ) j lb,k(t,τ) jgb,k(t,τ) αrb,k(t,τ) Pb,k(t,τ) j lu,k(t,τ) jgu,k(t,τ) αru,k(t,τ) ml ,k(t,τ) mg,k(t,τ) su,k(t,τ)}

and the non-zero elements of matrixA areA1,1 = D1(Ap)(αp,0, jlb0, jgb0,Pb,0), A1,2 = D2(Ap)(αp,0, jlb0, jgb0,Pb,0),
A1,3 = D3(Ap)(αp,0, jlb0, jgb0,Pb,0), A1,5 = D4(Ap)(αp,0, jlb0, jgb0,Pb,0), A2,5 = −1, A2,9 = sin(θ)Πs

Λs
, A2,10 = sin(θ)Πs

Λs
,

A3,2 = −αrb,0Cd, A3,3 = 1−αrb,0Cd, A3,4 = −Cd( j lb,0 + jgb,0)−Ud,b, A4,6 = −αru,0Cd, A4,7 = 1−αru,0Cd, A4,8 =
−Cd( j lu,0 + jgu,0)−Ud,u, A5,4 = 1

2Λsst
, A5,8 = 1

2Λsst
, A5,9 = 1, A5,11 = 1

2Λs[αrb,0 + αru,0− 1], A6,4 = 1
2Pb,0st , A6,5 =

1
2αrb,0st , A6,8 =−1

2Pu,0st , A6,10 = 1 andA6,11 = 1
2[Pb,0αrb,0−Pu,0αru,0]. The differential operatorD j signifies the deriva-

tive with respect to thej-th argument of the function the operator is acting on. For the second and third configurations,
equation (16) is an implicit differential equation, so for these configurations, matrixA has only five lines instead of the
six lines for the first and fourth configurations. The rest of the governing equation for the perturbation variables for the
first configuration are differential equations. They are

−δ
dαp,k

dt
+ j lb,k =h1,k, k = 1,2,3, . . . , (49)

−δ −Pb,0
dαp,k

dt
+(δαp,0 +δb)

dPb,k

dt
+ jgb,0Pb,k +Pb,0 jgb,k−=h2,k,k = 1,2,3, . . . , (50)

dml ,k

dt
+Λs( j lu,k− j lb,k) =h3,k, k = 1,2,3, . . . , (51)

dmg,k

dt
+Pu,0 jgu,k− jgb,0Pb,k−Pb,0 jgb,k =h4,k, k = 1,2,3, . . . . (52)

Now we solve the linear matrix equation (48) for the variables given in the vectorvk1
T = { j lb,k(t,τ) αrb,k(t,τ)

jgu,k(t,τ) αru,k(t,τ) ml ,k(t,τ) mg,k(t,τ)} for k = 1,2,3, . . . in terms of the variables given in vectorvk2
T = {αp,k(t,τ)

jgb,k(t,τ) Pb,k(t,τ) j lu,k(t,τ)} for k = 1,2,3, . . .. We define the matricesA11 = [A2 A4 A7 A8 A9 A10] and A12 =
[A1 A3 A5 A6], whereAk represents thek-th column of matrixA. We obtain

v1k = Bv2k +qk , k = 1,2,3, . . . , (53)

whereB = A11
−1A12 andqk = A11

−1fk . Since for the first configurationsu = st , the 11-th column ofA is not used
in the matrix equation (48). This equation allow us to eliminatej lb,k(t,τ),αrb,k(t,τ), jgu,k(t,τ),αru,k(t,τ),ml ,k(t,τ) and
mg,k(t,τ) in favor of the variablesαp,k(t,τ), jgb,k(t,τ),Pb,k(t,τ) and j lu,k(t,τ) in the other equations necessary to describe
the first configuration. Next, we substitute the expression forj lb,k andml ,k, given by the matrix equation (53), into the
equation (51) to obtain
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j lu,k =− 1
Λs

{
B5,1

dαp,k

dt
+B5,2

d jgb,k

dt
+B5,3

dPb,k

dt

}
+B1,1αp,k+B1,2 jgb,k+B1,3Pb,k− 1

Λs

{
d
dt

qk5 +h3,k

}
+qk1,k= 1, . . .

(54)

sinceB5,4 = 0. We substitutej lu,k, given by the equation (54), into the expression forjgu,k given by the matrix equation
(53) (B2,4 6= 0). Then, we substitute the resulting expression forjgu,k together with the expression formg,k ( matrix
equation (53)) into the differential equation (52) to obtain a differential equation only in terms ofαp,k, jgb,k andPb,k. We
also substitute the expression forj lb,k into the differential equation (49) to obtain another differential equation only in
terms ofαp,k, jgb,k andPb,k. Equation (50) is already a differential equation only in terms ofαp,k, jgb,k andPb,k. As a
result, we have a system of three differential equations

M
d
dt





αp,k

jgb,k

Pb,k



+K





αp,k

jgb,k

Pb,k



 = pk ,k = 1,2,3, . . . , (55)

in terms of three variables, whereM1,1 = B6,1−Pu,0B3,4B5,1/Λs, M1,1 = B6,2−Pu,0B3,4B5,2/Λs, M1,3 = B6,3−Pu,0B3,4

B5,3/Λs, M2,1 =−δ , M3,1 =−δPb,0, M3,3 = δαp,0+δb, K1,1 = Pu,0(B3,1+B3,4B1,1), K1,2 = Pu,0(B3,2+B3,4B1,2)−Pb,0,
K1,3 = Pu,0(B3,3 +B3,4B1,3)− jgb,0, K2,1 = B1,1, K2,2 = B1,2, K2,3 = B1,3, K3,2 = Pb,0 andK3,3 = jgb,0. The coefficients
of the matricesM andK which do not appear above are zero. Once we solve the system of differential equations to obtain
αp,k, jgb,k andPb,k, we use equation (54) to obtainj lu,k, and then the matrix equation (53) to obtain the rest of the variables
of the k-th perturbation problem. Notice that thek-th perturbation problem depends on the solution of the(k− 1)-th,
(k−2)-th, (k−3)-th, . . . ,1-th perturbation problems.

Landau Equation as an Evolution Equation.

To obtain the Landau equation as the evolution equation of the amplitude of the pair of unstable modes, we need to
obtain the solution of the governing equations for the perturbations up toO(ε3)(k = 3). For the problem ofO(ε), f1 = 0,
which implies thatq1 = p1 = 0 and the matrix equation (55) fork = 1 is an homogeneous system of differential equations.
We assume solution of the form{αp,1 jgb,1 Pb,1}T = w12exp(λ t), whereλ and the vectorsw12 andw12

T
a are, respectively,

solutions of the eigenproblems

(K +λM)w12 = 0, (56) w12
T
a (kT +λMT) = 0. (57)

For system parameters values close to the critical values, both eigenvalue problems haveλ1 = σ + iω, λ2 = σ − iω,
with σ > 0, andλ3 real and negative.λ1 andλ2 correspond to the complex conjugate eigenvectorsz and its complex
conjugatēz of the eigenvalue problem given by equation (56). The adjoint eigenvalue problem, given by equation (57),
has distinct eigenvectors, but the same eigenvalues. We assume that the eigenvaluesλ j are single roots of the characteristic
equation for the eigenvalue problems (56) and (57), and under such condition,

w12aMw12 6= 0, (58) and w12aMw12 = 1 (59)

is used as the normalization condition forw12a. Since the term proportional toexp(λ3t) decays exponentially fast, we
write the solution of equation (55), withk = 1, as

{αp,1 jgb,1 Pb,1}T = A(τ)w12exp(iωt)+c.c. (60)

wherec.c. stands for complex conjugate andw12 = z. In writing the solution as above, equation (55), withk = 1, is
satisfied with an error ofO(ε3).This error has the formσM{αp,1 jgb,1 Pb,1}T and should be added to the problem of
O(ε3), as we will see below.j ju,1 is obtained from the solution given by equation (60) with the help of equation (54) with
k = 1. The other perturbation variables are obtained from the solution given by the equations (60) with the help of the
matrix equation (53). The solution for the perturbation problem ofO(ε) has the form

v1 = A(τ)w1exp(iωt)+c.c., (61)

where the elements of the vectorw1 were obtained as described in the above paragraph. For the problem ofO(ε2), we
need the non-homogeneous part of the equation (55), withk = 2, given by the vectorp2, which has the form

p2 = p20|A(τ)|2 +p22A(τ)2exp(i2ωt)+c.c. (62)
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with

p20=





−Pu,0q113 + w̄13w15 +w13w̄15
−q111

iω(w13w̄15− w̄13w15)− w̄13w15−w13w̄15



 , p22=




−i2ωq126−Pu,0q123 + i2ω Pu,0

Λs
B34q125 +w13w15

−q121
iωδw15wv1−w31w15





(63)

and

q11i =
6

∑
n=1

(A12
−1)i,n

[
10

∑
l=1

10

∑
k=1

w1l E(n)l ,kw̄1k +
10

∑
l=1

10

∑
k=1

w̄1l E(n)l ,kw1k

]
andq12i =

6

∑
n=1

(A12
−1)i,n

[
10

∑
l=1

10

∑
k=1

w1l E(n)l ,kw1k

]
.

(64)

We use the bilinear formsw1
TE(n)w1,n= 1, . . . ,6 to make the notation more compact. The elements of these bilinear

forms areE(1)l ,k =−Dl ,k(Ap)(αp,0, j lb,0, jgb,0,Pb,0)(l ,k = 1,2,3), E(1)l ,5 =−Dl ,4(Ap)(αp,0, j lb,0, jgb,0,Pb,0)(l = 1,2,3),
E(1)5,k =−D4,k(Ap)(αp,0, j lb,0, jgb,0,Pb,0)(k = 1,2,3), E(2)3,4 = E(2)2,4 =Cd, E(3)6,8 = E(2)7,8 =Cd, E(5)5,8 =−st/2.
The matricesE(4) andE(6) are matrices with zero elements only. The elements of the matricesE(n),n = 1, . . . ,6 not
mentioned above are zero. We assume a solution of the problem of orderO(ε2) in the form

{αp,2 jgb,2 Pb,2}T = λ20|A(τ)|2 +λ22A(τ)2exp(i2ωt)+c.c., (65)

where the vectorsλ20 andλ22 satisfy

Kλ20 = p20, (66) (i2ωM +K)λ22 = p22. (67)

With the help of equation (54) withk = 2, we obtain j lu,2 from {αp,2 jgb,2 Pb,2}T , and with the matrix equation (53)
we obtain the rest of the perturbation variables ofO(ε2). Therefore, the solution of the perturbation problem ofO(ε2) has
the form

v2 = |A(τ)|2w20+A(τ)2w22exp(i2ωt)+c.c., (68)

wherew20 (w22) is obtained formλ20 (λ22) as described in the above paragraph. For the problem of orderO(ε3) we need
the non-homogeneous part of equation (55) withk = 3, given byp3, which has the form

p3 = (Mw12[σA(τ)− dA
dτ

]+p31|A(τ)|2A(τ))exp(iωt)+p33A(τ)3exp(i3ωt)+c.c. (69)

with

p31 =





w13w205 +w203w15− iωq216−Pu,0q213 + Pu,0
Λs

B3,4(−iωq215−Λsq211)+ w̄13w225 +w223w̄15

−q211
iωδ (w15w201 +w205w11)− iωδ (w11w205 +w201w15)−w13w205−w203w15 + i2ωδ w̄15w221− iωδw225w̄11

−i2ωδ w̄11w225 + iωδw221w̄15− w̄13w225−w223w̄15



 , p33 =





w13w225 +w223w15− i3ωq236−Pu,0q233
−q211

i2ωδ (w15w221 +w225w11)− i2ωδw11w225

+Pu,0
Λs

B3,4(−i3ωq235−Λsq231)

−iωδw221w15−w13w225−w223w15





(70)

and

q21i =
6

∑
n=1

(A11
−1)i,n

[
10

∑
l=1

10

∑
k=1

(
w20l E2(n)l ,kw1k +w22l E2(n)l ,kw̄1k

)

+
10

∑
m=1

10

∑
l=1

10

∑
k=1

w1m

(
w1l E(m,n)l ,kw̄1k + w̄1l E(m,n)l ,kw1k

)]
,

q23i =
6

∑
n=1

(A11
−1)i,n

[
10

∑
l=1

10

∑
k=1

w22l E2(n)l ,kw1k +
10

∑
m=1

10

∑
l=1

10

∑
k=1

w1m

(
w1l E(m,n)l ,kw1k

)]
,

(71)
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whereE2(1) = E(1) is already given,E2(n)l ,k = E(n)l ,k for k≥ l ,n = 2, . . . ,6,, E2(n)l ,k = E(n)k,l for l > k,n = 2, . . . ,6,
E(m,1)l ,k = Dm,l ,k(Ap)(αp,0, . . . ,Pb,0) (m, l ,k = 1,2,3), E(5,1)l ,k = D4,l ,k(Ap)(αp,0, . . . ,Pb,0) (l ,k = 1,2,3), E(m,1)5,k =
Dm,4,k(Ap)(αp,0, . . . ,Pb,0) (m,k= 1,2,3), E(m,1)l ,5 = Dn,l ,4(Ap)(αp,0, . . . ,Pb,0) (m, l = 1,2,3) andE(5,1)5,5 = D4,4,4(Ap)
(αp,0, . . . ,Pb,0). If the coefficients of matricesE(m,n),n = 1, . . . ,6 andm= 1, . . . ,10 are not mentioned above, they are
zero.

To avoid secular terms in the solution for{αp,3 jgb,3 Pb,3}T , we need to cancel out the term proportional toexp(iωt)
in the non-homogeneous termp3, and in doing so we obtain

Mw12[σA(τ)− dA
dτ

]+p31|A(τ)|2A(τ)) = 0. (72)

Multiplying the equation above by the adjoint vectorw12a and taking equation (59) into account, we obtain Landau
equation with its coefficientµ given by the equation

µ =−w12ap31. (73)

The solution for the problem ofO(ε3) has the form

{αp,3 jgb,3 Pb,3}= λ33A(τ)3exp(i3ωt) (74) and (i3ωM +K)λ33 = p33 (75)

is satisfied by the vectorλ33. By using equations (53) and (54), we can obtain the rest of the perturbation variables of
O(ε3) from αp,3, jgb,3 andPb,3. The asymptotic solution ofO(ε3) has the form

v3 = A(τ)3w33exp(i3ωt)+c.c, (76)

and the perturbation of the steady state with an error ofO(ε4) is given as∑3
k=1vk .

STABILITY CRITERIA

For the stability of the steady state, the real part of the eigenvalues of the eigenvalue problem (56) has to be negative.
The characteristic polynomiala3λ 3 +a2λ 2 +a1λ +a0 = 0 of this eigenvalue problem is a third order polynomial, what
allow us to have analytical expressions for the eigenvalues. We define in terms of the coefficientsak,k = 0, . . . ,3 the
quantitiesR= ((a1a2)/a3−3a0/a3)− (a2/a3)3/27, Q = (a1/a3)/3− (a2/a3)2/9 ands1(s2) = {R+(−)

√
Q3 +R2}1/3.

If R2 +Q3 ≥ 0, analytical expressions for the eigenvalues areλ1 = −(a2/a3)/3+(s1 +s2) andλ2(λ3) = −(a2/a3)/3−
(s1+s2)/2+(−)i

√
3(s1−s2)/2, and ifR2+Q3 < 0, analytical expressions for the eigenvalues areλk = 2

√−Qcos(θ/3+
2(k−1)π/3)− (a2/a3)/3,k = 1,2,3 with θ = cos−1(R/

√
−Q3). According to the expressions above, the steady state is

stable only if

max{cos(θ/3),cos((θ +2π)/3),cos((θ +4π)/3)}2
√
−Q− (a2/a3)/3 < 0 if R2 +Q3 < 0,

and (77)

max{(s1 +s2)− (a2/a3)/3,−(s1 +s2)/2− (a2/a3)/3}< 0 if R2 +Q3 ≥ 0.

Lost of stability of the steady state through a Hopf bifurcation happens when a pair of complex conjugate eigenvalues
have their real part to become positive as we vary the system parameters. According to the paragraph above, a Hopf
bifurcation of the steady state for the present model for two-phase flows in pipe-riser systems is possible only ifR2+Q3 >
0, and in this context, we need only−(s1 +s2)/2− (a2/a3)/3 < 0 for the steady state to be stable.

DISCUSSION AND CONCLUSION

We were successful in obtaining Landau’s equation and its coefficients as the evolution equation for the amplitude of
the pair of complex conjugate unstable modes under the assumption that the steady state lose stability through a Hopf
bifurcation. The lost of stability of the steady state was shown theoretically in Zakarian (2000) for a simpler two-phase
flow model and is supported by the cyclic behavior of instabilities observed in experiments with gas-liquid flows in pipe-
riser systems reported in the literature.

Equation (77) represents the stability criteria for the steady state of the two-phase flow model for pipe-riser systems
discussed in this work, since only the first configuration has a steady state as discussed previously. We can use this stability
criteria to obtain the regions in the system parameters space where the steady state is stable. For configurations of the
system parameters in these regions, the system can operate without going through hydrodynamic instabilities.
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Issues that remain to be solved are to verify if the eigenvalue problems related to the perturbation variables for the sec-
ond, third and fourth configurations have the same structure we assumed for the eigenvalue problem for the perturbations
of the first configuration, and if the real part of the complex conjugate pair of eigenvalues, if they exists, is positive and
small for values of the system parameters for which the first configuration steady state has gone through a Hopf bifurca-
tion. If these facts are not true, the asymptotic theory presented here can not be applied to the equations for the second,
third and fourth configurations.

The study of dynamic behaviors more intricate than the hydrodynamic instabilities described in the introduction that
the present model may have is beyond the scope of this work.

This paper is a report on work in progress.
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