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Abstract: Porous materials are very important in noise control applications. They are able to dissipate sound energy
reducing reverberant noise and improving sound insulation. There are several models available which can be used to
predict acoustic performance of porous materials. More simplified models consider the porous medium as an equivalent
fluid with effective properties. However, in some porous materials, such as foams, frame motion plays an important
role in the sound propagation and they are called poroelastic materials. Often, these kinds of materials are modeled
using more complex model obtained from Biot’s theory. In this case the three waves which can propagate in the porous
medium are considered and their intensity will be directly related to the boundary conditions. In this paper prediction
of sound transmission through a double panel with a poroelastic core is presented. The porous material formulation is
based on the Allard-Johnson’s model which takes into account five fluid-acoustic properties. The results of equivalent
fluid model and Biot's model are compared for different boundary conditions. It is shown that these models can be
equivalent in some cases and a simpler equivalent fluid model becomes advantageous since no information regarding
elastic properties of the frame is required.
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INTRODUCTION

Dynamic behavior of porous materials is quite complex and a theoretical approach is necessary in order to design
efficient multilayered systems for sound insulation. A comprehensive porous material model was developed by Biot
(1956 and 1962). This model assumes that three waves may propagate in the porous medium. Although there are many
situations where one can model porous medium approximately as an equivalent fluid (Allard, 1993), Biot's model has
been adopted as a standard model for porous materials in general. It has been observed that it gives better results for
flexible structures lined with porous materials (Lauriks et al., 1992, Bolton and Green, 1993, Bolton et al., 1996) and it
is specially appropriate for foams. For these materials, the elastic properties of the frame are very important and they are
usually called poroelastic materials.

In this paper the two porous material models, poroelastic and equivalent fluid (rigid frame), are used to model a porous
material layer between two elastic panels. The transfer matrix method is adopted to compute the sound transmission loss
of the multilayered system with distinct layers. This is a general method and it can be used to model large multilayered
systems (Allard et al., 1986 and 1987, Lauriks et al., 1992, Brouard et al., 1995). The porous layer is submitted to different
boundary conditions and the results are presented for different elastic properties of the porous frame.

POROELASTIC MODEL

Biot's theory yields the following wave equations (Bolton and Green, 1993, Bolton et al., 1996)

NO?u+O[(A+N)65+ Q6 '] = —0?(p11u+ p12U) 1)

0[Q6°+ RO | = —0?(p12u + p22U) (2

whereu is the vector solid displacement field abids the vector fluid displacement field® = O.u and6’ = 0.U
are volumetric deformations in the phaseébk= E;/[2(1+ v)] is the shear modulus with; being thein vacuoYoung’s
modulus of the bulk solid phase andthe Poisson ratioA = vE; /[(1+ v)(1— 2v)] is the first Lang constantQ =
Ke(®)(1— ¢) is positive and represents the coupling between the volume change of the solid and that of the fgid with
being the porous material porosity. The frequency-dependent prdfeisythe bulk modulus of elasticity of the fuid in
the pores that will be presented latBrrelates fuid stress and strain and is assumed to €dg).

The parameterpi1, p12 andpoo are mass coefficients that account for the effects of non-uniform relative fluid flow
through pores. These coefficients depend on the fluid and solid masses and inertial coupling. Allowance for viscous
energy dissipation resulting from the relative motion between the solid and the fuid phases of the porous material results
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in complex mass coefficients as follows

p11=(1-9)ps+pa—i09°G(®)/®  pro=¢pt+pa—ic9’G(w)/® pr2=—pa+icy’G(w)/o  (3)

whereps andp; are the densities of the solid and fluid phases. Frequently, porous materials are characterized in terms
of a bulk densityp; = (1— ¢)ps. The additional masg, resulting from intertial coupling is related to the tortuosity
as follows

Pa= 0P (0t — 1) (4)

The term related to viscous dissipation includes the flow resistviind the frequency-dependent funct®(w) that
will be presented later.

Equations (1) and (2) can be rearranged in order to present the following equation (Bolton et al., 1996)
%05+ A1 0265+ A20° =0 (5)
Considering harmonic propagatiet?' " in Eq. (5), two solutions are possible and their wavenumbers are given by

62 Al—q/A%—4A2 62 A1+1/A%—4A2 (6)

1= 2 2 2
whereA; andA, are obtained from
A — ®” (P11R— 2012Q + P22P) A — o* (P11P22 — p5r) 7
! PR—Q? 2 PR—Q?

whereP = 2N + A. Thus, two longitudinal waves may propagate in an elastic porous material with distinct wavenum-
bers. The ratios between the fluid and solid phase displacemertsgiven by (Allard, 1993)

i=12 (8)
The wave equations can be also rearranged in another manner yielding (Bolton et al., 1996)

2@+ 829 =0 (9)

whereW is rotational strain of the solid phase. Equation (9) governs the propagation of the shear wave in the solid
phase and its wavenumber is given by

w? [ _ 52
82 =— ( - JZ) 10
s = | P11 D22 (10)

A quantity uz which represents the ratio of fluid and solid phase displacements can be written as

EQUIVALENT FLUID MODEL

Considering porous material as a fluid with effective properties may be of interest in some situations and for some kinds
of porous materials (Bolton and Kang, 1997). Since the porous medium is considered as an equivalent fluid, Helmholtz
equation becomes the governing equation. Thus, for an equivalent fluid with effective properties, one can write

Ip+ w?Pep=0 (12)
Ke
wherepe andKe are the effective properties of an equivalent fluid. Equation (12) represents the propagation of a single
compressional wave through the porous medium. The wavenumber can be directly related to the effective.dmmsity
the effective fluid bulk moduluk, by (Allard, 1993)
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=0,/ (13)

The fluid effective densitye in the pores is frequency-dependent and also depends on four porous material macro-
scopic propretie®, o, 0w andA (viscous characteristic length). The Biot-Allard model gives the following expression
(Allard, 1993)

_ of
Pe(®) = 0ewpo [1+ Topate G(w)} (14)
where,
4iag popow
G(w)=4/1+ o267 (15)

Note that an equivalent fluid model is a particular case of Biot’s theory since

p22=9pe (16)

The effective fluid bulk moduluks is a frequency-dependent property and also depends on the thermal characteristic
length/’. The Biot-Allard model presents the following expression

Ke(©) = it a7)

Y= (y—1) [1+[(8ko)/ (IN'Npraopo) | G' (@)]

/ . -POwNpr/V2
G(a))flerlilﬁuo , (18)

whereR, is the atmospheric pressurnethe specific heat ratidy,r the Prandtl number angy dynamic viscosity of the
fluid in the pores.

where,

The equivalent fluid model can be advantageous in relation to the poroelastic model (Biot’s model) since it does not
require frame elastic properties. However, this alternative model is only applicable to some cases (Bolton and Kang,
1997). It is also important to mention that the equivalent fluid model presented here is applicable to porous materials
with rigid frame. Limp porous materials should include a correction in the effective dgnsfbai et al., 1997, Lai and
Bolton, 1998).

TRANSFER MATRIX APPROACH

Figure 1 shows a plane acoustic wave impinging upon a material of thicknasan incidence angl. Various types
of waves can propagate in the material, according to its nature. The geometry of the problem is bidimensior{al an the
plane. A dependency & ¥ is used in the transverse coordinate direction.

plane wave . .
incidence finite-thickness
system

Figure 1 — Plane wave impinging upon finite-thickness system
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The x component of the wavenumber for each wave in the finite medium is equal xoctiraponent of the incident
wavenumber in the fluid on the incident side of the finite medium. @t@mponent of the wavenumber is given by

o .
ky = < sin@ 19)

wherew is the angular frequency of the wave, ands the speed of sound in the fluid. Sound propagation in the layer
is represented by a transfer matfi¥ such that

V(My) = [TV (M) (20)

whereM; andM; are two points set close to the forward and the backward face of the layer, respectively, and where
the components of the vectdi(M) are the variables which describe the acoustic field at a pdiaf the medium. The
matrix [T] depends on the thickneksand the physical properties of each medium.
Fluid layer

This type of layer is primarily used to model air gaps between material layers. The acoustic field is completely defined
at any pointM by the vector

V(M) = [p(M) vo(M)]" (21)

wherep andv; are the acoustic pressure and ttemmponent of the fluid velocity, respectively.
The transfer matrix of a fluid lay€T '] with thicknessh is given by

B cogkzh) i(wpo)/(kz) sin(kzh)
=1 itk /(wpoysindieh)  cosioh) (22)

This type of layer can also be used to model an equivalent fluid layer. In this case, the fluid ggrmtgomes an
effective densitype and the wavenumbée becomes an effective fluid wavenumber Thus, thez component of the

wavenumber becomés = /kZ — k2.
Solid layer

This type of layer is used to model solid materials in general, i.e., it is not limited to thin solid layers and is applicable
to thick layers. In this case, one compressional wave and a shear wave may propagate through the solid medium. The two
wavenumbers can be obtained as

2 2
6]? _ 0" Ps 62 _ O°Ps (23)

B As+ 2us 3 Us

whereps is the solid density. The first Lanconstanfis and the shear modulus apgd are given by

Es(1+ins)vs Es(1+ins)
Ao = — /7S == >~ 24
S 1+ ve)(1—2vs) B = (1 ve) (24)
wherekE;s is the Young’s modulusys the loss factor ands the Poisson ratio.
The vector of the field variables which describes the acoustic field at anyMaifithe solid layer is given by
VE(M) = [W(M) vz(M) 02(M) TXZ(M)]T (25)

wherevy andv; are thex andz components of the velocity, respectivaby,the normal stress angl, shear stress at the
pointM.

The transfer matrix of a solid layéf %] with thicknessh can be obtained as follows

[T = [F(=h)Ire©)] ~* (26)

where,
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wky cos(kyz2) —iwkysin(kiz2) i wk3zzSin(Ks,2) —wkz;Cc08(ksz2)
r5(2)] = —iwkizsin(kizz) wki7c05(k1,2) wky cos(ks;2) —iwkysin(ksz2)
—(As02 +2usk2,) cos(kizz)  1(As82 +2usks,)sin(kizz)  2ipskeks, Sin(ks;2) —2115kxks, COS(ka2)
2i tskyk1z Sin(Ki22) —2usKyk1z COS(K172) —us(k2 —kZ,) cos(ks2) ius(kZ —kZ,) sin(ks;2)

This 4x4 matrix relates wave amplitudes and field variables in any point of the solid layer alonditbetion (Brouard
et al., 1995).
Poroelastic layer

This type of layer can be used to take into account all possible waves that may propagate in a porous medium. Ac-
cording to Biot’s theory, 3 waves may propagate in a porous elastic medium. The tuegonents of the wavenumbers

can be obtained as
ka:1/6j2—k§ j=12and3 27)

where the wavenumbets are given by Egs. (6) and (10).
The acoustic field at any poiM of a poroelastic layer can be described by a ve¢tbas follows

VP(M) = [Vz(M) V3(M) V(M) c5(M) (M) o' (M)]T (28)

which contains six independent acoustic quantitiesxtardz componentgv;) and(v5) of the frame velocity, the

componen(vg) of the fluid velocity, two componeni®s) and(1x,) of the frame stress tensor, and the comportert)
of the fluid stress tensor.

The transfer matrix of a poroelastic lay@®] with thicknessh can be obtained as follows

[TP) = [MP(~h)[rP(0)] (29)
where,
wky cos(kyz2) —iwkysin(kiz2) wky cos(koz2)
—iwkizsin(kizz) ki cos(ki,z) —iwky,sin(ky,z)
[Fp(z)] _ 7ia)u1klein(klzZ) . (D,LllklzCOS(klzZ). 7ia)ﬂ2k223in(k222)
—[(P+11Q) 8% — 2NK2] cos(ki2) i[(P+ 11Q)8Z — 2NK2]sin(kizz)  —[(P+ 12Q) 82 — 2NK2] cos(kz,2)
2iNkykiz sin(ki,2) —2Nk¢ki, cos(ki,z) 2iNkyko, sin(kp,2)
—(11R+ Q)82 cos(kiz2) i(u1R+ Q)82 sin(kyz2) —(12R+ Q)82 cos(kpz2)
—iwkysin(ky;2) i k3, sin(ksz2) —wks; cos(ks;2)
kg, €05(k2,2) wky cos(ks;2) —iwkysin(ksz2)
0 Uk, c0S(koz2) o usky cos(ks,z) —imuskysin(ks,z)
i[(P+ 12Q) 82 — 2NK2] sin(kp;2) 2iN kyks, Sin(Ks;2) —2Nkyka, coS(Kz,2)
—2Nkko, cos(Kp,2) —N(k2 — kZ,) cos(ks,z) iN(k2 —K3,)sin(ks;2)
i([.izRJr Q)8225in(kzzz) 0 0

This &x6 matrix relates wave amplitudes and field variables in any point of the poroelastic layer al@djréaetion
(Brouard et al., 1995).

GLOBAL TRANSFER MATRIX

A global transfer matrix can be obtained by combining the transfer matrices of each layer and interface matrices
between layers. Consider a sound transmission problem as illustrated in Fig. (2).

As an example, the acoustic field at poftan be related to the acoustic field at the pMatoy the following equation

[V (A) + [ [TPIVE (M) = 0 (30)

wherell¢1] and[Js1] are the interface matrices that depend on the nature of the layers. These matrices will be presented
later.
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fluid (1) () (n) fluid

SR

AMl MZ M3M4 MZn—lMZn B

TOT 1T

Figure 2 — Sound transmission through multilayered system

This procedure can be extended to various layerskFod, 2, ... ,n—1 one can write

[k e ) IV K (M) + B e ) T E VIV EFD (Mg ,.4)) = 0 (31)

This set of equations can be written in a form

[Do]Vo =0 (32)

whereVo = [VI(A) VO(M,) - V=D (Mg, 2) VIV (Ma)]T.

Another equation can be used to relate a point near the free surface in tha tay@wintB in the transmission side.
Thus, the vectov (B) and the vectov (" (2n) of the last layer are related by

iy 1V ™ (Man) + [V (B) = 0 (33)

whereV(B) = [p(B) vi(B)]T.
Also, the impedancgg of the fluid at the poinB is related to the characteristic impedance of the fHids follows

Zs = p(B)/V} (B) = Zo/ coso (34)

or,

-1 zglVi(B)=0 (35)

A new set of equations can be obtained inserting these equations into Eq. (32) yielding

DV=0 (36)

where,

- Vf (A) -
V@ (My)
Do) 0 V& (Ma)
D] = [ O [l Pyt ] and V= { VY(OB) } = : (37)
o J VD (Man_2)
V(Mg
vi(B)

Sound transmission loss

A relationship between the reflection factoand the transmission factbis given by

PA_pE) )
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The addition of this new equation to Eq. (36) yields

t0o... —(1+r) 0 _
D) V=0 (39)

The determinant of this matrix is null and, thus, the surface impedégeéthe pointA is given by

7del{D1}

Za= detD,)] (40)

where déD;] is the determinant obtained when the first column of the mdBixis eliminated and déD,] the
determinant when the second column is eliminated. As a result, the reflectionrfaatobe computed as

ZpC0S0 — Z
[=———— 41
ZpC0S0 + Zy (41)
The transmission factaris calculated as
detDn.1]
t=—(14r)———— 42

where defDn1] is the determinant obtained when tfi¢+ 1)th column of the matriXD] is eliminated. Finally, the
sound transmission logsL is given by

TL=—10logt) = —10log(|t|?) (43)

Note thatr represents the sound transmission coefficient.

INTERFACE MATRICES

In the transfer matrix method the boundary conditions are imposed by interface matrices. These matrices are therefore
presented below for solid, fluid, equivalent fluid and poroelastic layers interfaces.

Solid-fluid interface

01 00 0 -1
[lsf] |: 0 0 1 0] s [Jsf} = [ 1 0 :| R [Ifs] = [Jsf] and [st] = “sf}
0 0 01 0 O

Solid-equivalent fluid interface

0100 0o -1
[lsef] = [ 0 01 0] 5 [Jsef] = [ 1/¢ 0 ] 5 [lefs} = [Jsef] and [\]efs] = [lsef]
0 0 01

Solid-poroelastic interface

1 0 0O 1 0 0 0 0O

01 00 01 00 O00O0

0 010 0 001 0 1

0 0 0 1 0O 0OO0OO10O0

Poroelastic-fluid interface
0 1-¢ ¢ 0 00 0 -1
0 0 0100 1-¢ O
0= 0 o o o1 ol Ba=|"5" o | feel=1 and 3] =[1p]

0 0 0O 0 0 1 ¢ 0



Effect of Boundary Conditions in the Sound Transmission through Double Panel with Poroelastic Core

CONFIGURATIONS AND PROPERTIES

Three different lining configurations were used in order to investigate the relevance of the elastic properties of a porous
layer in a double wall system. Figure (3) illustrates these configurations which impose different boundary conditions to
the porous layer. In the configuration 1, the twarhaluminium panels are bonded to a porous material layer which is
20mmthick. For configuration 2, one face of the porous layer is lightly uncoupled from the panel and a very thin air gap
will appear (Olmmfluid layer). In the configuration 3, the two porous faces are uncoupled from the two panels and two
air gaps are formed.

aluminium panels air gap air gaps

¥

porous porous porous
material material material

. -

lmm 20mm lmm O.1lmm 0.1mm 0.1lmm

N

<_

Configuration 1 Configuration 2 Configuration 3

Figure 3 — Configurations for double panel lining

The properties of porous materials used for sound insulation can vary over a wide range. However, in this paper, the
elastic properties of the porous frame are the focus of analysis. These properties are the Young’s bulk Bapthéus
Poisson ratiov and the loss factan. In this study only Young'’s bulk modulus; and Poisson ratie of the porous frame
are allowed to vary and other porous material properties remain the same. The effect of the loss factor of the porous
material is not shown. However, it is known that an increase in the damping tends to smooth the transmission loss curve
since frame waves are more attenuated.

A typical foam used for noise control purposes may present bulk demsity40kg/m?, loss factom = 0.2, porosity
¢ = 0.95, flow resistivityc = 20 1Grayls/m, tortuosity o, = 2 and characteristic lengths = A’ = 100um. These
properties were adopted for the porous layer in all analyses.

The fluid is air with densitypo = 1.21kg/m?, sound speedy = 342m/s, dynamic viscosityug = 1.85 10°Ns/n?,
specific heat ratiq = 1.4, Prandtl numbeNp, = 0.73 and atmospheric pressig= 1.0132 10N/n?. The solid panels
are made of aluminium witks = 70GPa, ns = 0.01, ps = 2700<g/m3 andvs = 0.33.

RESULTS

Only the poroelastic model accounts for the elastic properties of the porous frame. Therefore, a direct comparison to an
equivalent fluid model for different elastic properties provides important information regarding the frame waves relevance.
Figures (4), (5) and (6) show the results for the configurations 1, 2 and 3, respectively. Results are the difference between
the transmission loss obtained with a poroelastic model for the porous Tlygr&nd the transmission loss obtained with
an equivalent fluid model for the porous lay&i¢). The transmission loss is calculated for oblique incideice 60°)
in order to also excite shear waves in the porous frame. All calculations were carried out fidmta0*Hz.

Subfigures (a) shown in the Figs. (4), (5) and (6) consider the variatién fifr v = 0.3 and subfigures (b) present
the effect of the variation of for E; = 10°N/n?. The limits of variation which were adopted &g are 1dN/n? and
10°N/n? since most of porous materials will be inside this range. Following the same idea, the Poisson ratio was allowed
to vary up to 045.

It can be verified by comparing Figs. (4), (5) and (6) that the range of variatibhpf T Le+ is large for configuration
1 and small for configuration 3. For example, the difference between models is lower 1d&fdr configuration 3. This
clearly shows that frame waves are more important when the porous frame is directly excited by a solid interface.

For all configurations there is a low frequency region where models present very similar results. This region ends
around 300Hz where it occurs the mass-stiffness-mass resonance. This frequency mainly depends on the panels masses
and the stiffness of the air between the two panels. For configuration 1, where frame is directly bonded to the two panels,
frame stiffness is also important and an increadgishifts this resonance to higher frequencies.

From a global point of view, it can also be observed in Figs. (4.a), (5.a) and (6.a) that models lead to closer results as
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Configuration 1 TLp - TLEf Configuration 1 TLp - T|_Ef
10° 045
04
0.35 '
|
0.3 |
E . 025
Z 10 J -
o 02
Lu +
: _ 0.15
: 0.1
-20
0.05
4
10 -30 0
10° 10° 10 10° 10° 10
Frequency [Hz] Frequency [Hz]
(a) Young’s bulk modulus effect for = 0.3 (b) Poisson ratio effect fd; = 10°N /m?

Figure 4 — Difference in the TL of the models for configuration 1

Configuration 2 TLp - TLEf Configuration 2 TLp - TLEf
10° / ’ 6 045 - 8
4 04
4 4
0.35
2
0.3 2
€ ° 0.25
3 10° 2 0
o 0.2
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4 0.15
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(a) Young’s bulk modulus effect for = 0.3 (b) Poisson ratio effect fd; = 10°N /m?
Figure 5 — Difference in the TL of the models for configuration 2
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Figure 6 — Difference in the TL of the models for configuration 3
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Young's bulk modulus is reduced. The only exception is found for configuration 3 as shown in Fig. (6.a). In this case a
very rigid frame E; = 10PN /) provides smaller difference (there is no dark blue region) between models.

The effect of the Poisson ratwis similar for all configurations. It can be observed that variations in relation to the
T Let caused by frame waves are shifted to higher frequenciessaascreased. This fact is clearly seen for configuration
1 where elastic properties are more relevant as shown in the red region in Fig. (4.b).

CONCLUSIONS

Poroelastic and equivalent fluid models were described in detail and adopted to model a porous layer between two solid
panels. Different boundary conditions for the porous layer were imposed by interface matrices and the relevance of the
elastic properties of the frame was investigated for each case. The transfer matrix method was also described and applied
to obtain the sound transmission loss through the multilayered systems. It is shown that the results of the two models
are similar when the porous material layer is not directly connected to a solid interface (configuration 3). This means
that, in sound transmission problems, porous layers can be modeled as an equivalent fluid when they are not bonded to
vibrating solid surfaces. Besides, for very limp porous materials, the influence of boundary conditions becomes lower and
models also present similar results. This indicates that acoustic performance of porous materials tends to be independent
of boundary conditions for low stiffness frames.

It is interesting to highlight that acoustic performance of porous materials is dependent of several properties. In this
paper only elastic properties of the frame were considered. However, inertial and viscous coupling between phases can
also be important. Light porous materials with high flow resistivity and tortuosity present strong coupling and the fluid
phase may excite the frame with high intensity. As a result, frame motion becomes more evident and its elastic properties
will influence more strongly acoustic performance even when frame is not directly excited by a solid interface. Future
work will address this topic.
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