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Abstract: For several types of rotating machines, like turbo machinery and ultracentrifuges, rotor flexibility plays a 
significant role. In this work, a flexible continuous rotor model is proposed and the eigenfunction orthogonality 
relationships are achieved in order to generate a discrete model by means of the modal superposition principle. Rotor 
equations of motion are then derived with the modal superposition series truncated to an arbitrary number of 
vibration modes. A test rig, comprising a thin shaft and inertial disks, where two of these disks are magnetic actuators 
for identification test purposes, has been designed, manufactured and assembled. A numerical simulation model 
corresponding to the experimental apparatus has been generated taking into account the first six bending vibration 
modes. Simulation results allow getting the natural frequencies, eigenfunctions (backward and forward precessions) 
and the system frequency responses. The tests performed demonstrate very good agreement among theoretical and 
experimental results. 
Keywords: Rotor dynamics, flexible continuous rotors, modal analysis. 

 
 

INTRODUCTION  
Flexible, high-speed rotors are found in several types of machines like turbomachinery and ultracentrifuges. Many 

of them have to pass through bending critical speeds to reach the nominal rotation. Rotor modeling is often performed 
by discrete methods like the finite element method or the transfer matrix method (Li et al., 2006). This   paper develops 
a flexible continuous rotor model useful for balancing, unbalance response and active bearings control studies. A test rig 
is designed and constructed to experimentally simulate a rotor based in the continuous approach. Results show a very 
good agreement between expected and measured values (Alves, 2004).   

The generic rotor model is composed by elements, with uniformly distributed inertia and stiffness parameters. These 
elements are assumed to have constant circular cross section and a constant mass density along their entire length and 
are referred as cylindrical elements. This modeling procedure takes into account translational and rotational inertia as 
well as gyroscope effects. The Bernoulli-Euler beam theory (no shear effects) is used to describe rotor element elastic 
deformations considering constant and isotropic material properties in its entire length. The point linking two adjacent 
elements is called a node, where parameters are concentrated and linear or flexural springs are assigned to simulate the 
stiffness of external bearings or the flexibility of internal couplings, respectively. Bearings may exhibit asymmetric 
stiffness values in two orthogonal axes of a given cross section but couplings are not allowed to. No damping, neither 
internal nor external, is considered. Only transversal bending vibrations are concerned here. Longitudinal and torsional 
vibrations are not taken into account. 
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Complex rotors can be modeled, in this way, like an assembly of several equivalent constant distributed parameter 
elements and nodes, with or without concentrated parameters, joining them. For example, a gear wheel mounted on a 
shaft, both made of different materials, can be modeled considering an equivalent mass density and equivalent inner and 
outer diameters for the cylindrical element inertia parameters calculations. In the same way, one should consider 
equivalent inner and outer diameters and equivalent Young modulus for the constant cross-sectional rigidity parameter 
calculation. If convenient, only the stiffness parameter due to the shaft should be taken into account. The feeling of the 
design engineer in assembling a rotor model like this is a key step in achieving good results. 

Rotor Element Equations of Motion 
The linearized set of equations of motion for a rotor element of length dZ, as shown in Fig. 1, in an inertial frame 

XYZ, according to Alves (2004), is given by: 
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Figure 1 – Rotor element 

where, , ,  and , are the mass per unit length, the transversal mass moment of inertia of the cross section 
(equal for both X and Y axes), the polar mass moment of inertia of the cross section (with respect to Z axis) and the 
flexural rigidity, respectively. 

m tj pj EI

E  is the Young’s modulus of elasticity and I  the cross-sectional area moment of inertia 
(equal with respect to X and Y axes). These parameters may be evaluated through the expressions (Alves, 2004): 
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where, M , l , ρ ,  and  are the total mass, the element length, the mass density, the outer and inner element 
diameters, respectively. All these parameters, as already mentioned, are assumed constant along the entire element 
length.  is the rotor angular velocity and  and  are external transversal forces per unit length in the X 
and Y directions, respectively. 
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Substituting into the homogeneous part of Eq. (1), according to Pedersen (1972), synchronous solutions of the form: 
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 The following eigenvalue problems arise: 
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From now on, dots denote differentiation with respect to time t and primes with respect to the length Z.  
The corresponding natural boundary conditions are: 
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where,   M  is the bending moment and   T  is the shearing force. 

The solutions for the above eigenvalue problems are given by (Parker and Sathe, 1999): 
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)(1 Zx , ,  and  are called eigenfunctions; )(2 Zx )(1 Zy )(2 Zy 1β ,  β2,  β3 and  β4  eigenvalues and ω  is the natural 
frequency. 

The constants     ,     ...     must be evaluated according to the boundary conditions which, besides the natural ones 
expressed by Eq. (5) and Eq. (6), are geometric (Meirovitch, 1977) and depend on the rotor elements constrains. Then, 
in order to determine these boundary conditions one must consider the rotor assembly. 

c1 c2 c16

Rotor Assembly 
 Figure (2) shows schematically the rotor assembly in the OXZ plane  (similar procedure for the OYZ plane). As it 

can be seen, the rotor is composed by n elements. The i-th element has  constant parameters. The 

first and the last elements have free ends. There are n-1 nodes. The i-th node has and   stiffness parameter of 
external linear springs in the X and Y directions, respectively. It has, also,  flexibility parameter of internal flexural 
spring equal in the X and Y directions. 
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The boundary conditions for each element shall be applied in the  local coordinate systems. Thus, the rotor 
element eigenfunctions will be derived in these local systems first. After that, the eigenfunctions of the whole rotor will 
be obtained in the OXYZ global coordinate system. 

ZYXO iii

The linear springs forces are given by: 
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The moments in the flexural springs are: 
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Figure 2 – Rotor assembly 

To evaluate the constants  of the eigenfunctions and , for each rotor element, the following 
boundary conditions must be applied: 
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For the first element: 
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For the i-th node: 
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The eigenfuntions and  are defined in local coordinate frames in the following domains: 
i

x1 i
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(Zi), ∀ Zi ∈ ℜ ∋ 0 ≤ Zi ≤ li
y2 i

= y2 i
(Zi),  ∀  Zi ∈ ℜ  ∋  0 ≤ Zi ≤ li

 

Substituting Eq. (5) on the , shearing forces and ,  bending moments, Eq. (7) and Eq. (8) of the 

 and eigenfunctions, respectively and Eq. (11) of 
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i4β eigenvalues into the boundary conditions 

given by Eqs. (14),  (15) and (16), a set of equations takes place as follows: 
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The set of equations (17) possesses a nontrivial solution if and only if its characteristic determinant vanishes. The 
values of ω  for which this condition is achieved are the so-called system natural frequencies. For each ω  value, each 
element eigenvalues     β1i

,     β2i
,   β3i

and     β4i
can be evaluated by means of Eq. (11). Substituting a ω  value in Eq. (17), 
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leads to the  eigenfunctions constants, usually calculated assigning a value (unity, for instance) for one of 
the cj

iii ccc 8 ..., ,2 ,1

i arbitrarily chosen. Substituting these constants into Eq. (7) and Eq. (8) one gets the  and eigenfunctions. 
i

x1 i
y2

Finally, in order to evaluate the whole rotor eigenfunctions corresponding to each natural frequency, according to  
Fig. (2), consider: 
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where,  is the Z coordinate of the origin of the each element local  frame defined in the OXYZ global 
frame.  
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Defining the unit step function as being: 
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The whole rotor eigenfunctions in the OXYZ global frame are given by: 
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where l is the rotor total length. 

The same procedure must be used in determining the  and the  eigenfunctions. For each natural 
frequency the corresponding eigenfunctions give the so-called vibration mode. 

)(2 Zx )(1 Zy

Orthogonality Relationships 
The two partial differential equations expressed by Eq. (1) can be rewritten as a set of first order differential 

equations as proposed by D’Eleuterio and Hughes (1984). To proceed so, the following operators are defined: 
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Substituting the above operators into Eq. (1) yields: 
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Eq. (18) is called a set of equations of motion in the configuration space. 

Defining, yet, the operators: 
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where,  is the order 2 column vector or square matrix null operator and substituting the above operators into     
Eq. (18) yields: 
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Eq. (19) is called a set of equations of motion in the state space. 

As it has already been seen, the solutions for the homogeneous part of Eq. (18) are given by the set Eq. (2). Taking 
the Eq. (2) time derivatives gives:  
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In the same way as for the Eq. (18), the homogeneous solutions of the set Eq. (19) may be written as follows: 
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Substituting Eq. (2) into the configuration vector , and, then, the resulting vector  and the set Eq. (20) into the 
state space vector    and, finally, this vector into Eq. (21), it is possible to get the following eigenfunctions in the state 
space: 
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For the i-th vibration mode with   ω i  natural frequency, these eigenfunctions are given by: 
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Note that now the index i refers to the i-th vibration mode and not to the i-th rotor element. 
Substituting Eq. (23) into Eq. (21) and the resulting vector into the homogeneous part of the set Eq. (19) the 

following eigenvalue problem in the state space results: 
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Now, multiply from the left the two equations in (24) by  and integrate each equation over the domain t
j1r   0 ≤ Z ≤ l . 

Repeat this same procedure, multiplying from the left the two equations in (24) by , there resulting four equations. 

For each equation, integral by parts are applied taking the boundary conditions of the whole rotor into account. After 
some tedious algebra manipulation, the following orthogonality relationships are achieved  (Alves, 2004): 
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where, , j refers to the j-th vibration mode and  is the Kronecker delta. 
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The integrals in the expressions above are inner products of the eigenfunctions and the M, K and G operators. Some 
of them, for the whole rotor, evaluated in local coordinate frames, are given bellow: 
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The index k refers to the k-th rotor element. As can be observed, the M and K operators are self-adjoint and the G 
operator is skew-self-adjoint. The other integrals have similar expressions. 

Modal Discretization 
The response of the system, according to the expansion theorem (Meirovitch, 1977), can be obtained by a 

superposition of the eigenfunctions multiplied by corresponding time-dependent generalized modal coordinates as 
follows: 
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Substituting Eq. (25) into Eq. (19) yields: 
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Multiplying Eq. (26) by  from the left and integrating it over the domain t
j1r   0 ≤ Z ≤ l  and repeating the same 

procedure, but multiplying Eq. (26) by , two equations arise. Introducing the orthogonality relationships in each of 

them, the following equations of motion for each i-th vibration mode are obtained: 
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Although no damping has been used in this model development up to now, a small modal viscous damping factor iξ  
can be added to the set Eq. (27). This can be done since usually  ξ i <<<1 and a small damping doesn't change 
significantly the natural frequencies and the corresponding eigenfunctions, which were previously evaluated 
considering the rotor-bearings system with no damping. With the added modal damping factors, the Eq. (27) becomes: 
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The displacement system output will be given by: 
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Numerical Simulations 
Figure 3 shows the rotor test rig that has been designed and built to experimentally simulate a flexible rotor modeled 

using the above procedure (Alves, 2004). 

 

Figure 3 - Rotor test rig 

The rotor is composed by a very flexible shaft and four disks supported by two self-compensating ball bearings. The 
two end disks are rotors of magnetic actuators that provide magnetic actuating forces in two orthogonal directions (X 
and Y) for each disk. The second disk (from left to right) is the rotor of a histheresis motor. The third disk is equal to the 
other ones and has an optical mark that can be read by a key-phasor sensor. Adjacent to the end disks, there are rings, 
which displacements can be measured by eddy current based displacement transducers in two orthogonal directions, 
either. 

This rotor has been modeled as shown in the schematic Fig. 4: 

 

Figure 4 - Schematic test rig rotor model 

The model comprises seventeen rotor elements. Seven of them are shaft elements (e1...e7), four are disk elements 
(d1...d4), four are ball bearing inner ring elements (ar11, ar12, ar21, ar22) and two are displacement sensor rings (as1, 
as2). There are sixteen nodes (n1...n16). In nodes n5 and n12 high stiffness linear springs are assigned in order to 
simulate the bearings stiffness. For disk and ring elements the inertia parameters are considered as the sum of the disks 
or rings plus the shaft inertia parameters. On the other hand, the flexural rigidity is due to the shaft, alone. 

In order to achieve the natural frequencies and the corresponding eigenfunctions, a computer script has been 
developed using MATLAB™ software. This script employs a characteristic determinant root finder using the regula 
falsi algorithm. Figure 5 shows the natural frequencies and the normalized eigenfunctions for the third and the fourth 
vibration modes at the rotational speed of 20 Hz: 
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Figure 5 - Eigenfunctions for the 3º and 4º modes at the speed of 20 Hz 

The third mode corresponds to a backward precession and the fourth one to a forward precession. 

Analytical and Experimental Frequency Response Functions 
In order to evaluate the analytical frequency response function (FRF), the rotor-bearing system matrices are 

assembled in state space form up to the sixth vibration mode, as follows: 
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position on the Z axis (middle of the ring, see Fig. 4). In this test, 
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punctual magnetic actuating force in the Y direction applied in the disk d1 in the  position on the Z axis (middle of 
the disk). 
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By introducing Eq. (28) and (29) into the Eq. (30), the system matrices result: 
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Analytical FRF's have been obtained with the freqresp MATLAB™ command for the rotor immobile and for a 
rotational speed of 20 Hz. A modal damping factor 3105 −×=ξ  was adopted for all modes.  

The experimental FRF's have been obtained using the HP™ 3567A signal analyzer. This equipment has a source 
signal generator (in voltage) that is sent to a power amplifier, which converts it in an electrical current that is converted 
to a magnetic force on the magnetic actuator of the disk d1 (Alves et al., 1996). This signal may be a swept sine (used 
on the immobile rotor FRF) or a random noise filtered in a certain frequency bandwidth (used on the rotor at speed of 
20 Hz FRF). The source signal is sent to an input channel on the analyzer and the displacement sensor signal of the as1 
ring is sent to another channel. The analyzer performs the sinusoidal transfer function between the sensor and the source 
signals. In the case of the random noise source, measure data average is performed in the frequency domain. Obviously, 
the gains of the displacement sensor, power amplifier and the magnetic actuator must be taken into account. 
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Figure 6 shows the comparison between the analytical and the experimental FRF's obtained with the rotor immobile 
and at a rotating speed of 20 Hz. As it can bee seen, there is very good agreement among the analytical and the 
experimental results. 

 

Figure 6 - Comparison between analytical and experimental FRF's 

Conclusions 
A flexible continuous rotor model has been obtained successfully. New eigenfunction orthogonality relationships for 

this case have been achieved, allowing modal discretization by means of the modal superposition principle. This feature 
makes this rotor model quite useful for balancing, unbalance response and active bearings control studies because, 
despite its computational cost in obtaining the natural frequencies and eigenfunctions, it can generate an accurate low 
order model considering only the vibration modes of interest. A test rig has been designed, manufactured and assembled. 
A numerical simulation model corresponding to the experimental apparatus has been generated taking into account the 
first six bending vibration modes allowing to get the natural frequencies, eigenfunctions (backward and forward 
precessions) and the system frequency responses. The tests performed, represented by some experimental rotor FRF's 
generated with the aid of the test rig magnetic actuator working like a non-contact shaker, demonstrate very good 
agreement between the theoretical and the experimental results. 
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