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Abstract: The remarkable properties of Shape Memory Alloys (SMAs) are attracting much technological interest in 
several science and engineering fields, varying from medical to aerospace applications. Hysteretic response of these 
systems is one of their essential characteristics being related to the martensitic phase transformation. The dynamical 
response of systems with SMA actuators presents a rich behavior due to their intrinsic nonlinear characteristic. Since 
experimental results show that SMAs present an asymmetric behavior when subjected to tensile or compressive loads, it is 
important to evaluate the influence of this kind of behavior in the nonlinear dynamics of mechanical systems with SMA 
devices. This article discusses the nonlinear dynamics of shape memory systems, considering the influence of tensile-
compressive asymmetry in the thermomechanical behavior of SMAs. An iterative numerical procedure based on the 
operator split technique, the orthogonal projection algorithm and the fourth order Runge-Kutta method is developed 
to deal with nonlinearities in the formulation. A numerical investigation is carried out showing some qualitative 
results such as chaotic-like response and multi-stability behavior for a single degree of freedom SMA oscillator. 
Keywords: Nonlinear dynamics, shape memory alloys, hysteretic behavior. 

INTRODUCTION 

The remarkable properties of Shape Memory Alloys (SMAs) are attracting much technological interest in several 
science and engineering fields, varying from medical to aerospace applications. Machado and Savi (2002, 2003) make a 
review on the most relevant SMA applications within orthodontics and biomedical areas. Engineering applications are 
also extensive. They are ideally suited to be used as self-actuating fasteners, thermally actuator switches, seals, 
connectors and clamps (van Humbeeck, 1999). Moreover, aerospace technology is also exploiting SMA properties in 
order to build self-erectable structures, stabilizing mechanisms, solar batteries, non-explosive release devices and other 
possibilities (Denoyer et al., 2000; Pacheco and Savi, 1997). Micromanipulators and robotics actuators have been 
conceived employing SMAs properties to mimic the smooth motions of human muscles (Garner et al., 2001; Webb et 
al., 2000; Rogers, 1995; Kibirkstis et al., 1997). Furthermore, SMAs are being used as actuators for vibration and 
buckling control of flexible structures (Birman, 1997; Rogers, 1995).  

Hysteretic response of shape memory alloys (SMAs) is one of their essential characteristics being related to 
martensitic phase transformation. Basically, hysteresis loop may be observed either in stress-strain or in strain-
temperature curves. The major (or external) hysteresis loop can be defined as the envelope of all minor (or internal) 
hysteresis loops, usually denoted as subloops. Macroscopic description of the SMA hysteresis loops, together with their 
subloops due to incomplete phase transformations, is an important aspect in the phenomenological description of the 
thermomechanical behavior of SMAs, being of great interest in technological applications (Savi and Paiva, 2005). 

The dynamical response of systems with SMA actuators presents a rich behavior due to their intrinsic nonlinear 
characteristic, being previously addressed in different references (Seelecke, 2002; Ghandi and Chapuis, 2002; Collet et 
al., 2001; Salichs et al., 2001; Saadat et al., 2001, 2002; Schmidt and Lammering, 2004; Williams et al., 2002; Feng 
and Li, 1996; Mosley and Mavroidis, 2001; Lagoudas et al., 2004; Han et al., 2005; Savi et al., 2002a). Various 
applications are exploiting SMAs’ dynamical response. SMAs’ nonlinear response is associated with both adaptive 
dissipation related to their hysteretic behavior and huge changes in their properties caused by phase transformations. 
Concerning the dissipation effect, SMAs’ high damping capacity may be exploited in adaptive passive control 
employed in bridges and civil structures subjected to earthquakes, for example (Han et al., 2005; Williams et al., 2002; 
Salichs et al., 2001; Saadat et al., 2002, Oberaigner et al., 2002). SMAs’ property changes due to phase transformations, 
on the other hand, may exploit either forces or displacements generated by this phenomenon as well as natural 
frequencies and stiffness variations (Williams et al., 2002; Pietrzakowski, 2000). Chaotic behavior is also a possibility 
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of SMA dynamical response discussed in different references (Savi and Braga, 1993a,b; Machado et al., 2004; Savi and 
Pacheco, 2002; Machado et al., 2003; Lacarbonara and Vestroni, 2003; Lacarbonara et al., 2004; Bernardini and Rega, 
2005). Recently, some experimental analyses confirm the presence of chaos in shape memory systems (Mosley and 
Mavroidis, 2001). 

Regarding the dynamical behavior of SMA oscillators, Savi and Braga (1993a) discuss the chaotic behavior of shape 
memory helical springs. Machado et al. (2004) discuss bifurcation and crises in a shape memory oscillator. Savi and 
Pacheco (2002) study some characteristics of shape memory oscillators with one and two-degree of freedom, showing 
the existence of chaos and hyperchaos in these systems. Machado et al. (2003) revisited the analysis of coupled shape 
memory oscillators, considering two-degree of freedom oscillators. All these articles employ a polynomial constitutive 
model to describe the thermomechanical behavior of SMAs. Savi and Braga (1993b) also study shape memory 
oscillators employing another constitutive model to describe the restitution force provided by a shape memory helical 
spring.  

This article deals with the nonlinear dynamics of shape memory systems where the restitution force is described by a 
constitutive model with internal constraints (Paiva et al., 2005). This constitutive model presents close agreement with 
experimental data and therefore, can represent more accurately the qualitative behavior previously analyzed in the cited 
references, which use a simpler constitutive model. The accurate representation of the SMA hysteresis is critical to the 
nonlinear dynamics analysis and allows more realistic description of important characteristics as the adaptive 
dissipation influence in the system dynamics (Bernardini & Rega, 2005). Since experimental results show that SMAs 
present an asymmetric behavior when subjected to tensile or compressive loads, it is important to evaluate the influence 
of this kind of behavior in the nonlinear dynamics of mechanical systems with SMA devices. The constitutive model 
employed in this article allows one to capture this important issue. An iterative numerical procedure based on the 
operator split technique (Ortiz et al., 1983), the orthogonal projection algorithm (Savi et al., 2002b) and the fourth order 
Runge-Kutta method is developed to deal with nonlinearities in the formulation. Numerical investigation is carried out 
showing some characteristics of SMA dynamical response.  

CONSTITUTIVE MODEL 

There are different ways to describe the thermomechanical behavior of SMAs. Here, a constitutive model that is 
built upon the Fremond’s model and previously presented in different references (Savi et al., 2002b, Baêta-Neves et al., 
2004, Paiva et al., 2005) is employed. This model considers different material properties and four macroscopic phases 
for the description of the SMA behavior. The model also considers plastic strain and plastic-phase transformation 
coupling, which allows the two-way shape memory effect description. Moreover, tension-compression asymmetry is 
taken into account. 

Besides strain (ε) and temperature (T), the model considers four more state variables associated with the volumetric 
fraction of each phase: β1 is associated with tensile detwinned martensite, β2 is related to compressive detwinned 
martensite, β3 represents austenite and β4 corresponds to twinned martensite. A free energy potential is proposed 
concerning each isolated phase. After this definition, a free energy of the mixture can be written weighting each energy 
function with its volumetric fraction. With this assumption, it is possible to obtain a complete set of constitutive 
equations that describes the thermomechanical behavior of SMAs as presented bellow: 

 ( ) ( ) ( )0112 TTEEE T
h

TC
h

C −−+−++= Ωβααβααεσ  (1) 

 

( )

( )[ ] χπ
T

h

T
h

TT
h

C
h

T
h

CT
h

TC
h

T

JJTTE

EE

110

2
121

1
1 21

∂+
⎭
⎬
⎫

∂−−−+

+⎟
⎠
⎞⎜

⎝
⎛ +−

⎩
⎨
⎧

++++=

Ωεα

αααβααααααβΛεα
η

β&

 (2) 

 

( )

( )[ ] χπ
C

h
C

h
CC

h

T
h

C
h

TC
h

CT
h

C

JJTTEE

E

220
2

2

12
2

2

2

1

∂+
⎭
⎬
⎫

∂−−−−⎟
⎠
⎞⎜

⎝
⎛ +−

⎩
⎨
⎧

−++++−=

Ωεααααβ

ααααααβΛεα
η

β

 

&

 (3) 



M.A. Savi, M.A.N. Sa, A. Paiva, P.M.C.L. Pacheco 

 

( )( )

( ) ( )( ) χπ
T

h
C

hMA

T
h

C
hMA

JJTT

EE

33120

3
2

12
3

3  
2
11

∂+
⎭
⎬
⎫

∂−−+−−+

⎩
⎨
⎧ ++−+−−=

βαβαεΩΩ

Λβαβαε
η

β

       

&

 (4) 

where ( )MAM EEEE −+= 3β  is the elastic modulus while ( )MAM ΩΩβΩΩ −+= 3  is related to the thermal 
expansion coefficient. Notice that subscript “A” refers to austenitic phase, while “M” refers to martensite. Besides, 
different properties are assumed to consider tension-compression asymmetry, where the superscript “T” refers to tensile 
while “C” is related to compressive properties. Moreover, parameters )(11 TΛΛ = , )(22 TΛΛ =  and )(33 TΛΛ =  are 
associated with phase transformations stress levels. Parameter αh is introduced in order to define the horizontal width of 
the stress-strain hysteresis loop, while α helps vertical hysteresis loop control on stress-strain diagrams.  

The terms πJn∂  (n = 1,2,3) are sub-differentials of the indicator function πJ  with respect to βn (Rockafellar, 1970). 
The indicator function ( )321 ,, βββπJ  is related to a convex set π, which provides the internal constraints related to the 
phases’ coexistence. With respect to evolution equations of volumetric fractions, η1, η2 and η3 represent the internal 
dissipation related to phase transformations. Moreover χJn∂  (n = 1,2,3) are sub-differentials of the indicator function 

χJ  with respect to nβ&  (Rockafellar, 1970). This indicator function is associated with the convex set χ, which 
establishes conditions for the correct description of internal subloops due to incomplete phase transformations and also 
avoids phase transformations M+ ⇒ M or M− ⇒ M.  

Concerning the parameters definition, linear temperature dependent relations are adopted for Λ1, Λ2 and Λ3 as 
follows:  
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Here, TM is the temperature below which the martensitic phase becomes stable. Besides, TL0 , TL , CL0 , CL , AL0  and 
AL  are parameters related to critical stress for phase transformation, remembering that the indexes “T” refers to tensile, 

“C” to compression and “A” to austenite. 

In order to contemplate different characteristics of the kinetics of phase transformation for loading and unloading 
processes, it is possible to consider different values to the parameter ηn (n = 1,2,3), which is related to internal 
dissipation: L

nη  and U
nη  during loading and unloading process, respectively. For more details about the constitutive 

model, see Paiva et al. (2005). 

SHAPE MEMORY OSCILLATOR 

Consider a single-degree of freedom oscillator, which consists of a mass m attached to a shape memory element of 
length L and cross-section area A. A linear viscous damper, associated with a parameter c, is also considered (Figure 1). 
The system is harmonically excited by a force F=F0 sin (ωt). 

 

m

K
F(t)

u

c

 

Figure 1. Shape Memory Oscillator. 

With these assumptions, equation of motion may be formulated by considering the balance of linear momentum, 
assuming that the restitution force is provided by a SMA element described by the constitutive equation presented in the 
previous section. Therefore, the following equation of motion is obtained, 

 ( )tFucum ωΚ nis0=++ &&&  (6) 

Notice that the restitution force may be expressed as AK σ= . Using the constitutive equation for SMAs, one writes, 
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In order to obtain a dimensionless equation of motion, system’s parameters are defined as follows, 
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These definitions allow one to define the following dimensionless variables, respectively related to mass 
displacement (U) and time (τ).  
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Notice that dimensionless variables are defined considering some reference values for temperature dependent 
parameters. This is done assuming a reference temperature, TR, where these parameters are evaluated. Therefore, 
parameters with subscript R (specifically, ER and ΩR) are evaluated in this reference temperature. Moreover, it is 
assumed that strain ε is represented by the dimensionless displacement U. The dimensionless equation of motion has the 
form: 
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where derivatives with respect to dimensionless time are represented by τdd /)()( =′ . This equation of motion can be 
written in terms of a system of first order differential equations as follows, 
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In order to deal with non-linearities of these equations of motion, an iterative procedure based on the operator split 
technique (Ortiz et al., 1983) is employed. With this assumption, the fourth order Runge-Kutta method is used together 
with the projection algorithm proposed in Savi et al. (2002b) to solve the constitutive equations. The solution of the 
constitutive equations also employs the operator split technique together an implicit Euler method. For βn (n = 1,2,3) 
calculation, the evolution equations are solved in a decoupled way. At first, the equations (except for the sub-
differentials) are solved using an iterative implicit Euler method. If the estimated results obtained for βn does not fit the 
imposed constraints, an orthogonal projection algorithm pulls their value to the nearest point on the domain’s surface 
(Paiva et al., 2005). 

 

NUMERICAL SIMULATIONS 

This section presents some numerical simulations developed in order to show the qualitative behavior of SMA 
dynamical responses. In all simulations, it is considered parameters presented in Table 1 that is related to typical NiTi 
alloys (Paiva et al., 2005). It is also assumed a SMA element with A = 1.96×10−5 m and L = 50×10−3 m, and also a 
unitary mass. Figure 2 presents a quasi-static stress-strain curve obtained with the adjusted parameters for a high 
temperature (T = 373K, where austenite is stable for a stress-free state). It is noticeable the tensile-compressive 
asymmetry, which represents a characteristic of SMA thermomechanical behavior. In order to analyze the effect of this 
characteristic, it is also considered a situation with tensile-compressive symmetry, assuming that tensile properties are 
applied to compressive behavior. 
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Table 1. SMA parameters. 

AE  (GPa) ME  (GPa) Tα  (MPa) Cα  (MPa) T
Rε  C

Rε  
54 42 150 165 0.0555 −0.035 

TL0  (MPa) TL  (MPa) CL0  (MPa) CL  (MPa) AL0  (MPa) AL  (MPa) 
0.15 41.5 0.17 96.2 0.63 185 

AΩ (MPa/K) MΩ (MPa/K) MT  (K) AT  (K) 

0.74 0.17 291.4 307.5 
L
1η  (MPa.s) U

1η  (MPa.s) L
2η  (MPa.s) U

2η  (MPa.s) L
3η  (MPa.s) U

3η  (MPa.s) 
10 27 10 27 10 27 

 

 

 Figure 2. Stress-strain curve for a high temperature (T = 373K). 

 

Free Vibration 

At first, free vibration is focused on, by letting δ vanish in the dimensionless equations of motion. It is assumed that 
reference parameters (ER , ΩR) are evaluated in the reference temperature TR = TM, that is, ER = EM , ΩR = ΩM. The 
system has different equilibrium points depending on temperature. The oscillator free response is illustrated analyzing a 
system without viscous damping (ξ = 0). Results from simulations are presented in the form of phase portraits. In order 
to establish a comparison between the dynamical response of symmetric and asymmetric systems, tensile-compressive 
symmetry are considered assuming tensile parameters listed in Table 1 to both tensile and compression behaviors. 
Figure 3 presents the free response of a system with tensile-compressive symmetry, at different temperatures: θ = 1.28, 
representing a high temperature where austenite is stable for a stress-free state; and θ = 0.99, a low temperature where 
martensite is stable for a stress-free state. Between these two temperatures, martensite and austenite may coexist and it 
represents a transition region between the two cited situations (Savi & Pacheco, 2002; Machado et al., 2003, 2004). For 
high temperatures, there is only a single equilibrium point. The system response presents dissipation for high 
amplitudes, converging to an elastic orbit near the equilibrium point, where phase transformations do not take place 
anymore. This behavior is due to hysteresis loop and initial conditions in the linear-elastic region do not present energy 
dissipation. For low temperatures, the dissipation characteristics are similar to the high temperature behavior but there is 
an increase in the number of equilibrium points. By observing the phase portrait, it is noticeable three stable equilibrium 
points (a stable point has a positive displacement, which is denoted as a positive equilibrium point, while a stable point 
that has a negative displacement is denoted as a negative equilibrium point), and it is possible to infer about the 
existence of unstable points among the stable ones. 
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Figure 3. Phase portrait for symmetric problem and different temperatures. (a) θ = 1.28 and (b) θ = 0.99. 

 

By considering the tensile-compressive asymmetry, phase portraits are deformed (Figure 4). For low temperature 
case, it is noticeable that the position of the negative equilibrium point is closer to the origin (when compared to the 
symmetric case), which causes differences in the dynamical response. Therefore, tensile-compressive asymmetry is an 
important characteristic to be verified in the design of SMA dynamical systems. 

 

Figure 4. Phase portrait for asymmetric problem and different temperatures. (a) θ = 1.28 and (b) θ = 0.99. 

 

Forced Vibration 

The behavior of the forced system is far more complex. At first, high temperature behavior is discussed exploiting 
the idea of the intelligent dissipation due to hysteresis loop.  A paradigmatic way to visualize this kind of behavior is 
considering the system response under resonant conditions. Hence, an asymmetric condition is employed together with 
parameters ξ = 0, ϖ = 1, and θ = 1.28. Moreover, austenitic properties are used as reference values (TR = TA, ER = EA , 
ΩR = ΩA). As it is well-known, a non-dissipative linear system tends to increase the response amplitude indefinitely 
under this condition (Figure 5, left hand). Shape memory system, on the other hand, tends to dissipate higher energy 
levels as the response amplitude grows. This is due to phase transformation related to hysteresis loop and therefore, the 
amplitude tends to stabilize in lower values, as shown in Figure 5 (right hand side). This behavior is interesting to be 
exploited as a vibration passive control. 
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Figure 5. Passive control exploiting hysteresis dissipation. 

At this point, low temperature behavior (where martensite is stable for a stress-free state) is focused on.  Therefore, 
it is assumed that reference parameters (ER , ΩR) are evaluated in the reference temperature TR = TM, that is, ER = EM , 
ΩR = ΩM. Moreover, it is assumed that ξ = 5×10−6, ϖ = 1, and θ = 0.99. In order to perform a global analysis, 
bifurcation diagrams are constructed, sampling the position against the slow quasi-static variation of the forcing 
amplitude parameter. Figure 6 shows bifurcation diagrams obtained using two different initial conditions for each 
parameter value, showing the attractor coexistence. Another possibility to obtain other attractors related to this 
parameter range is to consider stabilized values of state variables as initial conditions for the next parameter value, 
which is not capable to capture the coexistence of different attractors. By considering tensile-compressive symmetry, 
the bifurcation diagrams tend to be more symmetric for the positive and negative initial conditions. 

 

 

Figure 6. Bifurcation diagrams for ξ = 5×10−3, ϖ = 1 and θ = 0.99.  

Transient responses and multi-stability are interesting characteristics related to shape memory oscillators. 
Bifurcation diagrams presented in Figure 6 shows different cloud of points that appears depending on initial conditions. 
The forthcoming analysis exploits this coexisting attractors multi-stability by changing initial conditions and assuming 
δ = 4×10−3, ϖ = 1 and ξ = 6.4×10−2. By assuming initial conditions within the cloud of points presented in Figure 6a, a 
chaotic-like response occurs, being related to oscillations in the positive part of phase space, and therefore, it is called 
positive chaotic-like response (Figure 7). On the other hand, by assuming initial conditions within the symmetric cloud 
(Figure 6b), the system presents a negative chaotic-like response that occurs in the negative part of phase space (Figure 
8). 
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Figure 7. Multi-stability: Positive chaotic-like response. 

 

Figure 8. Multi-stability: Negative chaotic-like response. 

 

At this point, a chaotic-like response related to the bifurcation diagram region with the same kind of response for 
both investigated situations is considered by changing the forcing characteristics. Figure 9 shows a chaotic-like 
response when δ = 9.5×10−3, which is associated with all state space (including positive and negative parts).  

 

Figure 9. Chaotic-like response. 
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CONCLUSIONS 

This contribution analyzes the dynamical response of a single-degree of freedom shape memory alloy mechanical 
oscillator where the restitution force is described through a constitutive model with internal constraints. This model 
captures the general thermomechanical behavior of SMAs, allowing the description of various aspects of the dynamical 
system. An iterative numerical procedure is developed based on the operator split technique. Under this assumption, 
coupled governing equations are solved from uncoupled problems, where classical numerical methods can be employed. 
The fourth order Runge-Kutta method is employed together with the orthogonal projection algorithm, used to solve the 
constitutive equations. Results of numerical simulations indicate that this system has a rich behavior with different 
kinds of responses. An important characteristic of these systems is the equilibrium point temperature dependence, which 
means that the number and the characteristic of equilibrium points changes with the temperature. This behavior allows 
one to imagine changes of system position with temperature variation. Other interesting characteristic of SMA oscillator 
is the adaptive dissipation due to the hysteresis loop. Finally, it should be pointed out the possibility of SMA system to 
perform many types of behaviors, which can be exploited in the sense of giving flexibility to the system. Among 
various kinds of response, SMA oscillator may present chaotic-like response and also attractors multi-stability. 
Therefore, the response of SMA devices subjected to dynamic loadings can be very complex being of special interest to 
be accurately investigated. 
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