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Abstract: Vibration absorbers, also called vibration neutralizers, are mechanical devices to be attached to another 
mechanical system, or structure, called the primary system, with the purpose of reducing vibration and sound 
radiation. The simplest form of a vibration absorber is that of a single degree of freedom system where the “spring” is 
made of a viscoelastic material, perhaps with some metal inserts. This paper sets out to describe how to design a best 
possible system of viscoelastic vibration absorbers for an available viscoelastic material, known by its four fractional 
parameters model. A real example is presented and discussed. 
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INTRODUCTION 
Dynamic Vibration Neutralizers, more often incorrectly (Crede, 1965, page 121) called Dynamic Vibration 

Absorbers (DVA) are mechanical devices to be attached to another mechanical system, or structure, called the primary 
system, with the purpose of reducing, or controlling vibrations and sound radiation from surfaces and structural panels. 

Although conceptually incorrect, tradition has adopted the name Dynamic Vibration Absorber as standard. The 
phenomenon runs in parallel with the name random variable, also adopted by tradition, but which is not a variable at all: 
it is rather a function. Because only of this reason, in this paper the name absorber is used. 

Since absorbers were first used to reduce rolling motions of ships (Den Hartog, 1956), many publications on the 
subject have steadily come to light, demonstrating their efficiency in mitigating vibrations and sound radiation in many 
structures and machines.  

With modern technology of viscoelastic materials, which makes it possible to tailor a particular product to meet 
design specifications, vibration absorbers are easy to make and apply to almost any complex structure. 

In recent times, a great deal of effort has been done to extend and generalize the theory of vibration absorbers, 
applied to more complex structures than the single degree of freedom undamped one, tackled by Ormondroyd & Den 
Hartog (1928). 

Single degree of freedom vibration absorbers applied to particular positions of uniform beams, with particular 
boundary conditions, has been studied (Jacquot, 1978; Candir & Ozguven, 1986). Also mass distributed absorbers have 
been analyzed (Manikahally & Crocker, 1991; Esmailzadeh & Jalili, 1998). Simply supported uniform thin plates have 
also been considered as a primary system (Broch, 1946; Snowdon, 1975; Korenev & Reznikov, 1993). 

In the work of Espíndola and Silva (1992), a general theory for the optimum design of absorber systems, when 
applied to a most generic structure of any shape, with any amount and distribution of damping, was derived. That theory 
has been applied to viscoelastic absorbers of various types (Espíndola & Silva, 1992; Freitas & Espíndola, 1993). The 
theory is based on the concept of equivalent generalized quantities for the absorbers, introduced by the first author. 

With this concept, it is possible to write down the equations for the movement of the composite system (primary 
plus absorbers) in terms of the generalized coordinates (degrees of freedom), previously chosen to describe the 
configuration space of the primary system alone, in spite of the fact that the composite system has additional degrees of 
freedom introduced by the attached neutralizers. This fact was crucial in the development of the theory. It permits a 
coordinate transformation using the modal matrix of the primary system, which is invariant during the optimization 
process. With this transformation it is possible to obtain the modal space for the composite system without having to 
solve a complex eigenvalue problem for the whole composite system at each step of the iterative process, which could 
made it computationally out of question.  

In the modal space of the composite structure, it is possible to retain only few modal equations, encompassing the 
band of frequencies of interest. If coupling is not considered between these equations, then the absorber system can be 
designed to be optimum for a particular mode, in parallel with Den Hartog’s simple optimization method. If a set of 
coupled modal equations is retained, covering a particular frequency band, then a nonlinear optimization (or better, a 
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hybrid genetic algorithm/non-linear) technique can be used to design the absorber system to be optimum (in a certain 
sense) over that frequency band (Espíndola & Bavastri, 1995; Bavastri et alii, 1998). 

In recent years, the concept of fractional derivative has been applied to the construction of parametric models for 
viscoelastic materials (Bagley & Torvik, 1979; Bagley & Torvik, 1986; Torvik & Bagley, 1987; Pritz, 1996; Liebst & 
Torvik, 1996; Rossikhin & Shitikova, 1998; Espíndola et alii, 2004; Espíndola et alii, 2005b). 

This paper adds an important step to the above review: the design process is carried out for a particular set of 
fractional parameters, modelling the available viscoelastic material. In the end the anti natural frequencies of the 
absorbers are given together with their masses. With these parameters at hand, it is a matter of conceiving a spatial 
physical construction for the neutralizers. 

General Ideas and Definitions 
In this work the expressions primary system, or primary structure stand for the system, or structure, prior to the 

attachment of the set of absorbers. The primary structure, or primary system, considered in this paper may be of any 
shape, no matter how irregular or complex it is. Also, it may be inherently damped, the damping being considered 
viscous. 

    
(a)        (b) 

Figure 1: (a) Primary structure with absorbers attached to it. (b) A particular absorber.  

The absorbers to be attached to the primary structure are single degree of freedom systems, the mass of each one of 
then being a j , j=1, pm  where p is the number of absorbers. The “springs” of the single degree of freedom absorbers are 
made with a viscoelastic material, perhaps with some metal inserts. They are denoted by ( )a j Ω , j=1, pk , and are 
referred to a particular temperature. Each absorber is associated with a particular generalized coordinate of the 
configuration space of the primary system, where it is attached to. In this way, the jth absorber is attached at the point of 
the primary structure whose movement is described by the

jkq generalized coordinate. The index j may be omitted when 

unnecessary. Figure 1 shows a structure of general shape with some absorbers attached to it. 

The idea behind the attachment of a set of neutralizers on a primary structure is to reduce its responses to the action 
of input forces, or input displacements. How to design such a set of absorbers to achieve the best possible vibration 
abatement for a particular material, given in advance, is the subject of this paper. 

Equivalent Generalized Quantities for an Absorber 
For completeness, a brief review of the concept of generalized quantities for a simple vibration neutralizer, or 

absorber, is presented here (see Espíndola and Silva 1992). 

The simple absorber (the one degree of freedom absorber) has a single lump of mass (ma) connected to the primary 
structure through a resilient device (a “spring”, see Fig. 2), assumed as having a viscoelastic nature, with complex 
stiffness ka (Ω) equal to (Espíndola, 1995): 

 [ ]a c(Ω)= G (Ω)= G(Ω) 1+iη (Ω)k ϑ ϑ  (1) 

The base plate in figure 2 is assumed massless. 

In the above expression, Gc(Ω) is the complex shear modulus of the viscoelastic material, G(Ω) is the dynamic 
shear modulus, η(Ω) is the loss factor of such material; Ω is the circular frequency and ϑ is a geometric factor, 
depending on the shape and metal inserts of the viscoelastic spring. According to the fractional derivative model with 
four parameters, the complex shear modulus is given in Eq. (2). There, G0 and G∞ are the low and high frequency 
asymptotes, b is the so called relaxation time of the viscoelastic material and α is the fractional (0<α<1) order of the 
derivative of the model.  
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 In figure 2, Q(Ω) and  F(Ω) stand for the Fourier Transforms of the basis displacement q(t) and the applied force  
f(t), respectively. This applied force is a result of the interaction between the absorber and the point of the primary 
structure where it is attached. 

   

Figure 2: Scheme of a simple (single degree of freedom) absorber 

It is a simple matter to verify that the interaction force F(Ω) at the attachment (massless) plate “feels” the 
neutralizer as a dynamic stiffness given by: 

 ( )
( )

( )( )
( )( )

2

2 .
F Ω

=
Q Ω

m Ω G(Ω) 1+iη ΩaK (Ω) =a m Ω - G(Ω) 1+iη Ωa

ϑ

ϑ
 (3) 

The anti-resonant frequency of the simple absorber is defined as the one such that, in the absence of damping, makes 
the denominator of Eq. (3) equal to zero: 

 2
a aΩ = G(Ω ) /maϑ  (4) 

In Eq. (4), Ωa stands for the anti-resonant frequency of the absorber. In that equation, ϑG(Ωa) is the stiffness of the 
viscoelastic spring at the anti-resonant frequency Ωa. Note also that Eq. (4) is a transcendental equation for the anti-
resonant frequency of the absorber. Since it is possible to write Gc(Ω) = G(Ωa) ra(Ω) (1 + i η(Ω)), Eq. (3) can be 
rewritten as: 
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where ra (Ω) = G (Ω) / G (Ωa) and ( ) ( )( ) ( ) ( )( )2 22 2 2
a a a aD Ω = Ω r Ω -Ω + η Ω Ω r Ω . 

Now imagine a single degree of freedom system in which a mass m is connected to a fixed reference (“earth”) 
through a viscous dashpot of constant c. If a force f (t) is applied to the mass, this mass will respond with movement x(t). 

The ratio between the input force and output movement, in the frequency domain, will be  k (Ω)  =  F (Ω) / X (Ω) = 
- Ω2 m + i Ωc. If this equation is now compared with Eq. 5, one can see that the primary structure “sees” the absorber at 
the point of attachment as a mass me(Ω) connected to a viscous dashpot of constant ce(Ω), the other end of this dashpot 
connected to the “earth”. Figure 3 shows this interpretation. These two quantities are called here equivalent generalized 
mass and equivalent generalized viscous damping constant for the particular absorber. Dividing out both numerator and 
denominator of Eq. (5) by 4

aΩ , the equivalent quantities for the absorber can be written as: 

 
[ ]
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and 
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where  εa = Ω/Ωa . 
 

 
 
 
 
 
 
 
 
 
 

Figure 3: Equivalent systems 

It is a simple task to lift the hypothesis of massless base plate for the absorber and consider its mass in Eq. (7).  

Now, it has been proved that both schemes shown in Fig. 3 are dynamically equivalent (Espíndola and Silva, 1992) 
in the sense that the stiffness “felt” by the primary system is the same in both cases.  The primary system “feels” the 
absorber as a mass me(Ω), dependent on frequency, attached to it along a generalized coordinate q(t) and a viscous 
dashpot (even if the damping is of viscoelastic nature) of constant ce(Ω) (also dependent on frequency) linked to earth (a 
fixed reference). The dynamics of the resultant system (primary + absorbers) can then be formulated in terms of the 
original physical generalized coordinates alone (of which Q(Ω), in Fig. 3, is a representative coordinate), although the 
new system has now additional degrees of freedom (one for each absorber). This is a fundamental property of the 
concept of equivalent generalized quantities for the absorbers. 

The Response of the Compound Structure 
It can now be concluded from the previous discussion (and Fig. 3 helps this interpretation) that a linear structure 

modelled with many degree of freedom will have its damping and mass matrices modified (see below) by the 
attachment of the neutralizers, but not their size. If the primary system has been modelled as an n degree of freedom 
structure, both damping and mass matrices will still be of order n n×  after the attachment of the absorbers, in spite of 
the fact that p (p absorbers) new degrees of freedom have been added to it. As for the stiffness matrix, it remains 
unchanged after the attachment of the absorbers. 

Notice that Eq. (4) and (5) (or (6) and (7)) contain all the parameters of the fractional viscoelastic model. So, if p 
such absorbers, with equivalent generalized masses me1(Ω), me2(Ω), …, mep(Ω), and equivalent damping constants 
ce1(Ω), ce2(Ω), …, cep(Ω), are attached to the n degree of freedom primary system along the generalized coordinates 

p1 2k k kq ,q ,...,q , the equations of motion can be written, in the frequency domain, as: 

 2-Ω M + iΩC + K Q(Ω) = F(Ω)⎡ ⎤
⎣ ⎦  (8) 

where M  and C  are the modified  mass and damping matrices and are given by: 
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and C and M are the ordinary viscous damping and mass matrices of the primary system, respectively.  

Matrices MA(Ω) and CA(Ω) are diagonal and complex. Notice that the entry ( )j jk , k  is mej (Ω) in MA(Ω) and cej(Ω) 

in CA(Ω),  j = 1,  p. Notice also that a particular generalized viscous damping coefficient is given by (see Eq. (6)): 

 
3

a j a j
e j a j 2 2 2

a j a j a j

;a j
(Ω) (Ω)

(Ω) = Ω j =1, p
- (Ω) + (Ω) (Ω)

r η ε
c m

ε r r η⎡ ⎤ ⎡ ⎤
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where the index j stands for the jth  neutralizer. A correspondent expression can be written for the jth generalized 
mass. Note also that εaj = Ω/Ωaj   and raj(Ω) = G(Ω)/G(Ωaj), where Ωaj is the anti resonant frequency of the  jth  absorber.
  

The anti resonant frequencies of the neutralizers will be given by the equation below: 

 ( ) j a j
a j

a j

2
; j = 1, p

G (Ω )
Ω =

m
ϑ  (11) 

Now solve the following eigenvalue problem Kϕ = Ω2 Mϕ, involving the ordinary mass and stiffness matrices of the 
primary system, and define the modal matrix Φ = 

1 2 mr r r⎡ ⎤φ φ φ⎣ ⎦  ∈ n mR ×  containing only m eigenvectors 

kr
φ , k = 1,m . It is assumed that the corresponding band of frequencies 

1 mr r,⎡ ⎤Ω Ω⎣ ⎦  covers the band of frequencies 

where the vibrations are to be abated and that m<<n. 

 Assume that all the eigenvectors are orthonormalized so that T
mM IΦ Φ = and T

mKΦ Φ = ϒ , where 

1 2 m

2 2 2
m r r r= d iag ( Ω Ω Ω )ϒ .  

Now, in equation (8), apply the following transformation: 

 ( ) ( )Q Ω = ΦP Ω  (12) 

If Eq.(12) is taken into Eq.(8) and pre-multiplied by ΦT, one gets, assuming proportional damping in the primary 
system: 

 { } ( ) ( )2 T
A m A m-Ω M (Ω) + iΩ Γ + C (Ω) + P Ω = F Ωϒ Φ⎡ ⎤⎣ ⎦   (13) 

where 

 
1 1 2 2 m mm r r rr r r= diag (2ξ Ω 2ξ Ω 2ξ Ω )Γ  (14) 

 ( )m1 2m
2 2 2
r r r= diag Ω Ω Ωϒ

  (15) 

 ( ) ( )A A
T

mM I M=Ω +Φ Ω Φ  (16) 

 ( ) ( )A A
TC CΩ = Φ Ω Φ   (17) 

The 
kr

, k=1, mΩ  are undamped natural frequencies of the primary structure and 
kr

, k=1,mξ  are the corresponding 

modal damping ratios. Eq. (13) represents a small system of m<<n equations and can be solved directly for any 
frequency with use of Eq. (6) and (7). But this may not be the best way to follow, since matrices ( )AM Ω and ( )AC Ω  
are not diagonal. Instead, a more robust approach will be offered. Eq. (13) can be written in the following way: 
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or 
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The second set of equations in 18 is, in fact, an identity. Note that m×mA,B∈  and ( ) ( ) m×1Y Ω , G Ω ∈ . Note also 

that a time domain version of Eq. 19, say, ( ) ( ) ( )Ay t +By t =g t , where ( ) ( )( )-1y t = Y ΩF  and ( ) ( )( )-1g t = G ΩF , 

cannot be written simply because both matrices A and B are functions of frequency. This mixing of time and frequency 
domains would generate a set of non equations. 

It is not difficult to show that matrix B  is positive definite. Consider the following eigenvalue problem: 

 B Aθ = λ θ  (20) 

and define the following modal matrix Θ = [θ1   θ2  …  θ2m] and the diagonal spectral matrix Λ2m = diag (λ1   λ2  … λ2m).  

Assume that the eigenvectors are orthonormalized such that T
2mΘ AΘ = I  and T

2mΘ ΒΘ=Λ  and make the following 
transformation: 

 ( ) ( )Y ZΩ = Θ Ω
 (21) 

 This transformation is possible because the columns of Θ are linearly independent, which makes this matrix 
non-singular. In fact, the inverse of  Θ is -1 TΘ =Θ A . 

 Substituting for Y(Ω) into Eq. (19) and pre-multiplying by ΘT, one get: 

 ( ) ( ) ( )T
2m 2mi I Z GΩ +Λ Ω = Θ Ω  (22) 

 Solving Eq. (22) for Z(Ω), substituting  the result into Eq. (21) and remembering that Y(Ω) = [P(Ω)   iΩP(Ω)]T, 
one can get: 

 ( ) [ ] ( ) [ ] ( )T1 T
11 12 2m 2m 11 12P i I F−Ω = Θ Θ Ω +Λ Θ Θ Φ Ω  (23) 

Taking this result into expression 31, the following is obtained: 

 ( ) ( ) ( )1 T
2m 2mQ i I F−Ω = Ψ Ω +Λ Ψ Ω  (24) 

where Ψ = Φ [ Θ11   Θ12]  and [ Θ11  Θ12] is the upper half of the matrix Θ. The matrix  

 ( ) ( ) 1 T
2m 2mi I −Α Ω = Ψ Ω +Λ Ψ  (25) 

is the so called receptance matrix and is a model of the system in the frequency domain. Note that ( ) n nA ×Ω ∈ . 

 Having the receptance matrix for any frequency, the response at that frequency can be computed by: 

 ( ) ( ) ( )Q FΩ = Α Ω Ω
 (26) 

 The ths   column of the receptance matrix A(Ω) is given by the expression (27): 

 ( )
2m

s j
s j

j 1 ji=

ψ
α Ω = ψ

Ω+λ∑  (27) 

So, assuming p absorbers attached to the primary structure, the theory described above tells how to compute the 
response of the compound system. But the problem at hand is the reverse: having a primary system strongly responding 
to input excitations, how to design a set of dynamic absorbers so as to mitigate the vibrations to acceptable levels.  
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First, it is assumed that a convenient viscoelastic material is available, its four fractional parameters are known, and 
that all the absorbers are to be constructed with that material. Second, since a modal model of the primary structure 
must also be know for the design process, it is assumed that the number and place of attachment of the absorbers have 
been decided beforehand.  

The obvious places of attachment for the absorbers are the points of maximum displacement in each mode within 
the band of interest. An absorber placed at a nodal line of a mode will be completely inefficient in reducing vibration at 
that particular mode. 

Specification of the Absorber’s Masses 
For primary systems with only one degree of freedom, the recommended ratio between the absorber mass (ma) and 

primary structure mass (ms) by Den Hartog (1956) is µ = ma /ms = 0.1 to 0.25. The use of the modal mass ratio concept 
has been proposed by Espíndola and Silva (1992) for a system of multiple degrees of freedom as:  

 i j

j
j

1
a i

s

p
2
k si=

s

m
µ = ; j = 1, dm

⎛ ⎞
⎜ ⎟
⎝ ⎠

φ∑
 (28) 

where aim  is the mass of the ith neutralizer, d is the number of modes taken inside the band of frequencies (d is, in 

general, smaller than m, the number of eigenvectors kept from problem 2K Mφ = Ω φ . The symbol jsm  stands for the 
th

js  modal mass of the primary system, which in case of orthonormalization of eigenvectors is equal to one. The 

quantity i jk sφ  represents the element of Φ lying in the th
ik  line and th

js  column. The numbers ki, i = 1, p are of the 
coordinates ikq , where the p neutralizers are fixed to the primary structure. So, given jsµ , one for each of the modes of 

interest, a set of equations is established and aim , i = 1, p are computed by SVD decomposition of the system matrix 
associated with equations (28). The matrix of the system shown in Eq. 28 is of order d p× . Note that the number of 

modes to be controlled (d) inside the band of eigenvectors in n m×Φ∈ℜ  may be smaller, equal to or greater than the 
number of neutralizers (p) attached to the primary system. This means that the system of Eq. (28) may be 
underdetermined, over determined or determined. 

The arguments leading to Eq. 28 are too lengthy to be reproduced here.  

Optimization for a Frequency Range 
In what follows, it is assumed that a particular material is at hand, given by its four fractional parameters {α, b, G0, 

G∞}. In a different approach, the material (i.e., the four parameters) is searched for in the process of designing a 
optimum system of viscoelastic neutralizers (see Espíndola et alii, 2005a).  

Assume that the input force vector F(Ω) is known or that the input forces can be simulated with reasonable accuracy. 
It is of interest to modify the anti resonance frequencies ajΩ , j = 1, p in such a way that a norm of  P(Ω) is minimum. In 
such manner the response given by Eq. (26) is also minimized. Define x as a vector of anti resonant frequencies: 

 
T

apa1 a2x ⎡ ⎤⎣ ⎦= Ω Ω Ω
 (29) 

In Eq. (23) call  

 [ ]( ) [ ]T1
11 12 2m 2m 11 12V i I −= Θ Θ Ω +Λ Θ Θ

 (30) 

 Note that m mV ×∈ , that is, V is a small order square matrix. 

 Eq. (23) then becomes: 

 ( ) ( )TP V FΩ = Φ Ω
 (31) 

 Since the Frobenius norm of a matrix is a consistent one, the following expression is valid: 

|| P(Ω) ||2 = || VΦT F(Ω) ||F  ≤ || V ΦT ||F  || F(Ω) ||F  ≤ || V ||F  || ΦT ||F  || F (Ω) ||2.  Since T

F
Φ  is a positive 
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constant number and  ||F(Ω)||2  is fixed for every frequency, minimizing ||P(Ω)||2 means minimizing ||V||F in a certain 
way, for each and every frequency. So, take  the following objective function: 

 
( ) ( )

min max
F

f x max V , x
Ω ≤Ω≤Ω

= Ω
 (32) 

and minimize it. Note that V (Ω, x) is precisely the matrix V in Eq. (30), with Ω and x in evidence. Remember also 
that x in Eq. (32) is the vector defined in Eq. (29). 

As always, the better the information at hand the better the results will be. One should expect then that the results 
obtained using this definition for objective function (where no information about the input vector is used) are more 
conservative than those obtained using the previous one in Espíndola and Cruz (2005a). This is a price to be paid for 
our ignorance. The advantage of this present objective function is that it ignores the input excitation, which may be 
crucial in certain applications. 

After a minimization procedure of f(x), the p anti-resonant frequencies a1 a2 ap,Ω Ω Ω  for the p respective 

neutralizers are known. Since ajm , j = 1, p were given as input parameters, the ϑj, j = 1, p  parameters of the 

viscoelastic element can be computed at each frequency ajΩ , j = 1, p, from Eq. (11). This is only a geometric factor. It 
is now left to the designer to give shape and size to the absorbers so as to meet these anti-resonant frequencies and 
geometric factors. A simple example for heavy machinery illustrates this point. 

For a uniform viscoelastic pad working in compression, it can be shown that 

 
( )23 1+βS A

=
e

ϑ  (33) 

where A is the one side load carrying area, e is the thickness, β is a factor equal to two for circular and square pads 
and approximately two for moderately rectangular pads. S is the so called shape factor and is defined as the ratio of the 
one side load carrying area to the free surface area. 

In the design practice it may be convenient to make equal the resilient parts of all the absorbers. This calls for 
choosing the most significant (in a certain sense) of the form factors ϑj, j = 1, p (say ϑ ) and then recomputing the 
absorber’s masses: 

 aj
aj 2

aj

G (Ω )
m = ; j = 1, p

(Ω )
ϑ

 (34) 

A possible criterion is to specify ϑ  as the rms value of all ϑj, j = 1, p. 

Making the resilient parts equal for all the absorbers may signify an important saving in money (for instance in 
moulding and curing dies). Clearly this is an approximation often dictated by economy. The final result must then be 
checked. Simple as it is, this last approach may give excellent results as shown in Espíndola, & Bavastri, 1995, 1997. 

Absorbers working in shear are in general very small in size (a few grams to few kilograms) and are normally 
designed to be applied to vibrating light surfaces (such as machine casings) to reduce vibration response and noise 
radiated from them. Those working in compression are normally bigger and heavier (a few hundredths kilograms) and 
are used to reduce vibration responses of heavy machinery. 

In this paper an example of real application to heavy machinery is presented. 

Example: Field application to a turbine-generator hydro group 
The above theory was applied to a vertical hydroelectric group already assembled in the field and working for many 

years in the past. The entire shaft, generator rotor and turbine runner system is supported by a thrust bearing at the top 
of a six legged fabricated steel crosspiece. The thrust bearing rests on the crosspiece through ten Belleville springs. The 
steel crosspiece, on its turn, rests on the bulky and very stiff concrete structure. The total shaft length, from the top of 
thrust bearing to the bottom of the runner hub is 14 meters. The whole group runs at 300 [rpm].  

I t was not until the replacement of the wear ring for a new one that strong axial vibration was felt mainly in the 
region near the thrust bearing. Measurements have shown a clear axial vibration pick at about 48 [Hz] while the group 
was running. No significant lateral vibration has been measured at any frequency. 
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Frequency responses, with the group at rest but with the turbine runner submerged, were measured with the use of a 
large piezoelectric hammer and many accelerometers placed along the shaft to pick up longitudinal acceleration signals. 
In most of measurements the hammer hits the top end of the shaft, just above the thrust bearing. 

All frequency responses have shown a resonant frequency at around 48 [Hz], together with other picks above and 
below that frequency. 

A long and thorough study of possible excitations inducing such a strong response led to the conclusion that only 
one cause was plausible: flow instability in the rotor-wear ring passage. This flow instability induces forces at the 
turbine runner of a narrow frequency band nature (Tomita, 1991), this band encompassing the 48 [Hz], thus producing a 
self excited vibration with a strong component at this frequency. 

To solve this problem it was proposed to design an install six vibration absorbers, one in each of the six recesses in 
between the legs of the crosspiece. These vibration neutralizers have been installed as close as possible to the shaft. 

To properly design a system of vibration absorbers, a modal model of the primary system must be available. In the 
present case this model was constructed via finite elements technique. In the finite element model of the whole system 
the generator rotor was considered a rigid body, but not the generator spider, which was considered flexible. Also, the 
turbine runner was considered to be a rigid body. Altogether 13314 elements were used with 7834 nodes. 
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        Figure 4: Frequency response of the primary system and of the compound system 

The physical design of the six absorbers is precisely the same, except for the masses. It consist of three steel pillars 
supporting a cast steel shell filled with lead. The reason for using lead to fill the cast steel shells is to make it possible to 
house the absorbers in the available recesses of limited size. Also, this design solution allows for ease variation of the 
masses of the absorbers, simply by adding or taking off lead from inside the shells.   

Each pillar is made of two metal parts connected together in tandem by a viscoelastic insert. These viscoelastic 
inserts consists of two cylindrical discs separated by a one millimetre thick steel disc. The viscoelastic inserts are 
vulcanized together with the two metal pillar parts. These viscoelastic inserts constitute the “springs” over which the 
absorber mass rests. 

Figure 4 shows how a frequency response plot is modified by the use of absorbers. This is a particular response at 
the top of the crosspiece due to an excitation at the bottom of the turbine in the vertical direction. 

To properly interpret Fig. 4, it must be realized that no excitation existed outside a narrow band around 48 Hz. 

It is remarkable the effect of the absorbers over the frequency band of interest (40 to 70Hz). Since the excitation is 
in a very narrow indeed, around the 48 Hz, with no effect on other frequencies (for instance, in the low frequency range 
around 8,0 Hz) it seems that the absorbers, as designed, is a very good solution. In fact, field measurements in a wide 
band of frequencies has shown a 13 dB reduction in rms values of vibration velocity at 30 C. At 34 C (maximum 
temperature expected at the isolators) the abatement I reduced to 12 dB. 

 CONCLUSIONS 
A general theory for the design of systems of viscoelastic vibration absorbers has been produced. It assumes that a 

particular viscoelastic material is available beforehand. 
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The theory takes in as raw material the modal model of the primary system, that is, the original system (structure) 
without neutralizers attached. This model may be developed through a finite elements technique or an experimental 
identification scheme.  

So the theory is pretty general and by-passes any difficulties as related to the geometrical form of the primary 
system, assumed to be linear. 

This theory has been applied to a hydroelectric group to reduce vertical vibrations due to fluid-structure interactions 
at the bottom of the turbine. 

Six absorbers of the equal design, but allowing for different masses, have been constructed and installed. 

The efficacy of the system of absorbers is shown in Fig. 3 of the text and field measurements have shown that 12 to 
13 dB reduction in rms vibration speed was achieved, depending on the external temperature.  
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