
Proceedings of the XII International Symposium on Dynamic Problems of Mechanics (DINAME 2007),
P.S.Varoto and M.A.Trindade (editors), ABCM, Ilhabela, SP, Brazil, February 26 - March 2, 2007

Time-marching Aeroelastic Analysis of Typical Sections With Struc-
tural Nonlinearities in Transonic Regime

E. Camilo1, F. D. Marques1, and J. L. F. Azevedo 2

1 University of Sao Paulo/USP- Engineering School of Sao Carlos/EESC, Av. Trabalhador Saocarlense, 400, 13566-590
- Sao Carlos - SP, Brazil
2 Aerospace Technical Center, Aeronautics and Space Institute - CTA/IAE/ASE-N 12228-904 - Sao Jose dos Campos -
SP, Brazil- Sao J. dos Campos - SP, Brazil

Abstract: The application of time domain analysis for aeroelastic problem in a transonic flow is considered. The
methodology here proposed is to present an investigation on the effects of nonlinearities on aeroelastic behavior for an
airfoil moving in pitch and plunge. Here structural dynamics is considered in terms of free-play nonlinearities. The
CFD tool employed in the present work is based on the Euler formulation. The governing equations are integrated by
cell-centered, finite-volume, centered space discretization and five-stage, hybrid, explicit, Runge-Kutta time marching
scheme. This CFD tool solves flows around two-dimensional lifting surfaces moving in pitch and plunge. The com-
putational domain is discretized using unstructured grids and the movement is modeled with dynamic mesh algorithm.
To solve the aeroelastic problem the Runge-Kutta method is applied combined with the CFD code. The time domain
aeroelastic responses concerned particularly the NACA0012 airfoil are analysed by investigating flutter boundary and
typical LCO nonlinear effects from phase plane.
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NOMENCLATURE

a = location of elastic axis
e = total energy
kw = typical section bending stiffness
kα = typical section torsional stiffness
k = reduced frequency
M = Mach number
m = mass per unit span
p = pressure
Q = vector of generalized forces
q = vector of generalized coordinates
rα = nondimensional radius of gyration
about elastic axis

t = time
U∞ = freestream velocity at upstream
infinity
U∗ = reduced velocity
u,v = velocities in x, y directions
w = plunge displacement at elastic axis,
positive down
xα = nondimensional c.g.-elastic axis
offset
Greek Symbols
α = torsional deflection, positive nose
up
αs = torsional free-play

γ = ratio of specific heats
µ = mass ratio
ρ = air density
τ = nondimensional time
φ =vector of generalized coordinates
ω̄ = frequency ratio
ωw = uncoupled frequency in bending
ωα = uncoupled frequency in torsion

INTRODUCTION

In the last decades, nonlinear dynamics analysis has been largely developed and explored, both in the theorical and
experimental point of view, in a vast diversity of fields in science and engineering. Nonlinear aeroelasticity is a multi-
disciplinary field, that is very important in aeronautics and aerospace engineering (Dowell and Tang, 2002; Dowell, Tang
and Strganac, 2003). Most aeroelastic analysis of flight vehicles have been performed under the assumption of linearity.
Under this assumption, the characteristics of flutter and divergence can be obtained. However, the influence of nonlinear-
ities on modern aircraft is becoming increasingly important and the requirement for more accurate predictive tools grows
stronger (Lee, Price and Wong, 1999).

Aerodynamic nonlinearity is associated with the presence of shock waves in transonic flows. In this situation, the
unsteady forces generated by motion of the shock wave have been shown to destabilize single degree-of-freedom air-
foil pitching motion and affect the bending-torsional flutter by lowering the flutter speed at the so-called transonic dip
phenomenon (Thomas, Dowell and Hall, 2002).

Computational aeroelasticity is a relatively new field emphatisizing those types of aeroelastic problems where loads
based on Computational Fluid Dynamics (CFD), which can be both unsteady and nonlinear, are used (Oliveira, 1993;
Dubuc et al., 1997; Simoes and Azevedo, 1999). A significant amount of effort devoted toward the numerical solution
of transonic aeroelastic phenomena, not only in the prediction of transonic dip effects (Morton, 1996; Morton and Beran,
1999; Badcock, Woodgate and Richards, 2004, 2005), but also toward that of limit cycle oscillations (LCOs). Euler
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and Navier-Stokes schemes have been coupled with structural models (CSD) (Alonso and Jameson, 1994; Kousen and
Bendiksen, 1994).

The methodology here presented (Alonso and Jameson, 1994; Kousen and Bendiksen, 1994) is applied to obtain the
time domain aeroelastic responses for an airfoil moving in pitch and plunge in the transonic regime. The CFD tool for
the solution of 2D transonic flowfield around an airfoil. has been achieved in cooperation with CTA/IAE group (Azevedo
1992; Oliveira, 1993; Bigarella, Basso and Azevedo, 2004; Simoes and Azevedo, 1999). This CFD tool has been tested
and developed for the several unsteady aerodynamic applications considered in the CTA/IAE. However this CFD tool had
never used for time domain aeroelastic analysis before.

Limit cycle oscillations has been previously observed in nonlinear time-marching aeroelastic solver in the transonic
regime (Camilo, Marques and Azevedo, 2005,2006). In this article, the typical section model has been modified to include
the structural nonlinearity of free-play in the torsional degree of freedom (DOF). The purpose of this article is to present
preliminary results showing the effects of free-play on observed limit cycle behavior in the transonic regime, where
aerodynamic nonlinearities are presented. Structural nonlinearities can also lead to LCO whether the flow is transonic
or not. However, the present understanding of LCO induced by aerodynamic nonlinearities is less complete, and no
systematic quantitative correlation between theory and experiment has been achieved (Thomas, Dowell and Hall, 2002).

In the CFD code the Euler equations are integrated by cell-centered, finite-volume, centered space discretization and
five-stage, hybrid, explicit, Runge-Kutta time marching scheme. This CFD tool solves flows around two-dimensional
lifting surfaces moving in pitch and plunge. The computational domain is discretized using unstructured grids and the
movement is modeled with dynamic mesh algorithm. To solve the aeroelastic problem the Runge-Kutta method is applied
combined with the CFD code. The time domain aeroelastic responses concerned particularly the NACA0012 airfoil are
analysed by investigating flutter boundary and typical nonlinear effects like LCO from phase plane. To illustrate the
performance of the CFD-CSD solver flutter boundaries for a NACA0012 airfoil is performed using structural parameters
presented in Badcock, Woodgate and Richards (2004).

Aerodynamic Simulation

In the present study, the flow was assumed to be governed by the two-dimensional, time-dependent Euler equations,
which may be written in integral form for Cartesian coordinates as:

∂

∂ t

∫ ∫
V

Qdxdy+
∫

S
(Edy−Fdx) = 0, (1)

where V represents the area of the control volume and S is its boundary, Q is the vector of conserved quantities and the
inviscid flux vectors, E and F, are given by:

Q =


ρ

ρu
ρv
e

 , E =


ρU

ρuU + p
ρvU

(e+ p)U + xt p

 , F =


ρV
ρVu

ρV v+ p
(e+ p)V + yt p

 . (2)

where ρ , u, v, p and e are density, the two Cartesian components of the velocity, the pressure, and the specific total energy,
respectively.

The contravariant velocity components are defined as:

U = u− xt , V = v− yt , (3)

where xt and yt represents the Cartesian velocity components of the mesh.

Pressure is represented by the following state equation:

p = (γ−1)[e− 1
2

ρ(u2 + v2)] (4)

where γ is the ratio of specific heats.

The Euler equations can be rewritten for each i-th control volume as:

∂

∂ t
(ViQi)+

∫
Si

(Edy−Fdx) = 0. (5)

The Euler equations are a set of nondissipative hyperbolic conservation laws. Hence, their numerical solution requires
the introduction of artificial dissipation terms in order to avoid oscillations near shock waves and to damp high frequency
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uncoupled error modes. The numerical dissipation terms are formed as a careful blend of undivided Laplacian and
biharmonic operators (Simoes and Azevedo, 1999). Hence, the artificial dissipation operator, Di, can be written as,

Di = d2(Qi)−d4(Qi), (6)

where d2(Qi) represents the contribution of the undivided Laplacian operator, and d4(Qi) the contribution of the bihar-
monic operator (Jameson, Schmidt and Turkel, 1981). The biharmonic operator is responsible for providing the back-
ground dissipation to damp high frequency uncoupled error modes and the undivided Laplacian artificial dissipation
operator prevents oscillations near shock waves (Bigarella, Basso and Azevedo, 2004).

Therefore, the Euler equations after be fully discretized in space and the explicit addition of artificial dissipation terms,
can be written as:

d
dt

(ViQi)+C(Qi)−D(Qi) = 0, (7)

where C(Qi) represents convective operator, given by:

∫
Si

(Edy−Fdx)≈C(Qi) =
3

∑
k=1

[
E(Qik)(yk2− yk1)−F(Qik)(xk2− xk1)],

where
Qik =

1
2
(Qi +Qk), (8)

and the (xk1,yk1) and (xk2,yk2) are vertices which define the interface between the volumes i and k.

The unsteady Euler code is based on Jamenson’s finite volume and Runge-Kutta time-marching using a second-order
accurate, 5-stage, explicit, hybrid scheme. The 2-D Euler equations in integral form are discretized by a finite volume
procedure in an unstructured mesh (Oliveira, 1993).

Equations of Motion

Consider a typical two-degrees-of-freedom (DOF) airfoil section as shown in Fig.1. The equations of motion of this
aeroelastic system can be written in the form (Bisplinghoff, et al., 1996):

mẅ−Sα α̈ + Ḡ(w) =−L, (9)

−Sα ẅ+ Iα α̈ + M̄(α) = Mea. (10)

where the right-hand-side terms represent the aerodynamic loading terms, which are obtained from CFD code. The left-
hand-side terms m, S and Iα are the airfoil mass, airfoil static moment and pitch axis moment of inertia about elastic axis,
respectively. Ḡ(w) = kww and M̄(α) = kα α are the plunge and pitch stiffness terms. The equations of motion (Eqs. (9)

Figure 1 – Typical section model.

and (10)) are adimensionalized, where the pitching and plunging stiffnesses are modeled by linear springs attached at
the elastic axis. The plunge displacement is nondimensionalized with respect to the airfoil semichord b. The relevant
nondimensional parameters for the coupled problem are the elastic axis location a, the radius of gyration about the elastic
axis rα , the offset between the center of mass and the elastic axis xα the mass ration m = µπρb2, the frequency ratio
ω̄ = ωw

ωα
of the uncoupled natural frequency in plunge to that in pitch, and the reduced velocity Ū = U∞

bωα
. In addition, time

is nondimensionalized with respect to the uncoupled natural frequency of the structure in pitch, i. e., τ = ωα t.
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In terms of these dimensionless quantities, the equations of motion for the aeroelastic system are:

ẅ
b
− xα α̈ +

ω̄2

Ū2
w
b

=
CL

µπ
, (11)

−xα

r2
α

ẅ
b

+ α̈ +
1

Ū2 α =
2Cm

r2
α µπ

. (12)

where CL and Cm are nondimensional lift and moment aerodynamic coefficients, respectively.

The aeroelastic system given by Eqs. (11) and (12) are rewritten as a system of first-order differential equations by
setting:

φ1 =
w
b

; φ2 =
ẇ
b

; φ3 = α; φ4 = α̇, (13)

where the system of aeroelastic is expressed as:

φ̇ = M−1P−M−1Kφ (14)

where

φ =


φ1
φ2
φ3
φ4

 , P =


0

(U∗)2CL
µπ

0
2(U∗)2Cm

µπ

 , M =


1 0 0 0
0 1 0 −xα

0 0 1 0
0 −xα 0 r2

α

 , K =


0 −1 0 0

ω̄2 0 0 0
0 0 0 −1
0 0 r2

α 0

 . (15)

The fourth-order Runge-Kutta time-stepping scheme is used for the time integration differential aeroelastic equations
(Eqs. (15)).

Torsional Free-play

Several classes of nonlinear stiffness contributions have been studied in papers treating the open-loop dynamics of
aeroelastic system (Ko, Kurdila, Strganac, 1997; Lee, Price and Wong, 1999; Liu et al., 2001). In this work, torsional

Figure 2 – Torsional Free-play.

free-play has been included in the present model, which could represent a loose hinge or linkage backlash in a control
system (Kousen and Bendiksen, 1994). Then, the linear torsional moment function is replaced by the nonlinear function
shown in Fig.2. Any pitch displacement between −αs and +αs would result in a torsional resistence of 0. Free-play
modifies the aeroelastic equations of motion by changing Eq. (12) to:

−xα

r2
α

ẅ
b

+ α̈ +
1

Ū2 f (α) =
2Cm

r2
α µπ

. (16)

where the f (α) is given by:  f (α) = α−αs α > αs
f (α) = 0 −αs < α < αs
f (α) = α +αs α <−αs

(17)
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RESULTS

To check the unsteady CFD code and mesh refinement, three AGARD test cases listed in Tab. 1 were considered. Re-
sults are shown in terms of instantaneous pressure distributions for test case 1 given in Fig. 3 for eight different incidences
during the cycles. Relatively good agreement is obtained compared to the experimental values. Some minor discrepancies
can be observed around the shock location at the high incidence.

Table 1 – AGARD test cases examined in this report.

Case Airfoil M∞ αm α0 k a
CT1 NACA0012 0.6 2.890 2.410 0.0808 −0.237
CT2 NACA0012 0.6 3.160 4.590 0.0811 −0.237
CT3 NACA0012 0.755 0.016 2.510 0.0814 −0.25
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Figure 3 – Instantaneous pressure distributions for NACA0012 - AGARD test Case 1 (CT1)

Normal force (CN) and moment coefficient (Cm) are obtained for three AGARD test cases the results on the three mesh
refinement (Tab. 2). The meshes in the present work were generated with the commercial generator ICEM CFD, a very
powerfull tool capable of creating sophisticated with very good refinament and grid quality control. The loops for CN and
Cm are shown in Fig. 4. For case CT5, the moment coefficient is obtained about the airfoil quarter chord, whereas for
case CT1 and CT2 the moment coefficient is calculated about 0.273 chord. It was indicated in previous numerical studies
Dubuc et al. (1997) that better agreement for the moment coefficient loop was obtained by using this corrected value,
suggesting a possible error in the location of the moment center quoted for the experiments. The present results are in
good agreement compared to the experiments, although it is clear that its value is also affected by the fact that the viscous
effects have been neglected here when they might not be completely insignificant. Here, Cn and Cm results were also
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Figure 4 – Effect of grid refinament on solution

compared with implicit dual-time CFD methods given by Dubuc, et al. (1997). Differences between implicit dual-time
CFD methods (Dubuc, et al., 1997) and present CFD code was observated. However, such discrepancies also appeared
compared with experiments in the normal force.

Table 2 – Grids used for the grid refinament study.

Grid name Grid size Numder of points on airfoil surface
grid1 13744 volumes 192 points
grid2 15874 volumes 278 points
grid3 17844 volumes 284 points

Figure 4 shows also the corresponding normal force and moment coefficient for three grids considered here. The results
exhibits a sensitivity to the size of the grid employed. However, these results suggest that gain in accuracy is obtained
when using fine grids, and that sufficient accuracy can be obtained on a relatively coarse grid for Euler computation at
similar flow conditions

Comparison of Stability Boundaries

The subsequent aeroelastic response of the model was obtained by a time marching solution of the aeroelastic equations
(Eqs. (14)). The coupled computational fluid dynamic (CFD) and computational structural dynamics (CSD) method to
the two-dimensional typical section was performed. It consists of a NACA0012 airfoil. The results were calculated using
grid2 (Tab. 2) by first computing a converged steady flow solution about the airfoil with angle 0.1 degree of pitching about
the elastic axis. The steady Euler solution was determined using the steady portion of the original unsteady Euler solver.

Time integration of the coupled fluid-structural equations of motion (Eq. (14) is applied and incorporated within the
CFD Euler code as follows:

1. At time level n, perform an iteration of the Euler equation and calculate values for CL and Cm;

2. This information is used by the equations of motion, to determine the position and velocity of the airfoil;

3. The new position and velocity are taken into account by the flow equations, and the process is repeated.

The test problem considered to illustrated the performance of the proposed scheme is for the NACA0012 airfoil. Time-
marching aeroelastic analysis presented in this work is compared to the heavy case given by Hopf bifurcation analysis
in Badcock, Woodgate and Richards (2004) shown in Fig 5. The parameters for the structural linear model are given in
Tab.3. In the Badcock, Woodgate and Richards (2004), direct calculation of Hopf bifurcation points (flutter point) for an
airfoil moving in pitch and plunge in transonic flow at zero incidence is considered. The iteration scheme for solving the
Hopf equations is based on a modified Newton’s method.
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Table 3 – Structural model parameters

Parameter Value
xα 0.2
r2

α 0.2905
ω̄ 0.343
µ 100
a −0.1

Here, time-marching analysis is at 0.1 initial incidence. Discrepancies can be observed when compared with Hopf’s
case, possibly due to the different initial incidence and mesh density used in calculations. In present work, for M = 0.65
up to approximately M = 0.8 the responses presented differents equilibrium points probably due to 0.1 initial incidence.
Some difficulties were encountered with the exactly calculation of the flutter point. The flutter boundary shown in Fig. 5
of the present time-marching method were obtained when the system beginning limit cycle oscillations responses. Then,
the results value is also affected by the possible wrong prediction of flutter point.
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Figure 5 – Flutter boundary.

Effect of Torsional Free-play

To examine the effect of structural free-play on transonic flutter about the NACA0012 airfoil the structural parameters
given in Tab.3 was utilized.
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Figure 6 – Pitch limit cycle for U∗ = 4.5 without free-play.

First, at a constant Mach number 0.87, a series of time integration was performed at increasing reduced velocities
without free-play. An example of this case is show in Fig. 6, which shows the pitch time history and phase plane plots for
the case U∗ = 4.5. The slow approach of the system to relatively small-amplitude limit cycle indicating linear flutter point
(wich was found to be approximately 4.3. However, most of the runs do not need computations for many time periods,
because system oscillations were easy identified with converging (cf. Fig. 7(a)) or diverging (cf. Fig. 7(b)) amplitude by
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Figure 7 – Pitch limit cycle for (a) U∗ = 4 and (b) U∗ = 5 without free-play.
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Figure 8 – Free-play pitch limit cycle for U∗ = 4.5.

100 150 200 250 300 350 400 450 500
−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Nondimensional time

P
itc

h 
(r

ad
)

−10 −8 −6 −4 −2 0 2 4 6 8

x 10
−3

−5

−4

−3

−2

−1

0

1

2

3

4
x 10

−3

Pitch (radians)

P
itc

h 
ra

te

Time history Phase plane

Figure 9 – Free-play pitch limit cycle for U∗ = 4.

looking at only few of them.

Free-play was then added to the torsional spring by setting αs = 0.03 deg, and the new coupled system was integrated
forward in time for a range of U∗ values. Some results for this situation are shown in Figs. 8 to 12. Figure 8 shows
the pitch time history and phase plane trajectory for a reduced velocity of 4.5. Note that, in comparison with the linear
structural response (cf. Fig. 6) the system with free-play presented divergent response.

Decreasing U∗ in order to locate the stability point resulted in limit cycles of lesser amplitudes at reduced velocities
of 4 (cf. Fig. 9), 3.5 (cf. Fig. 10) and 3( cf. Figs. 11). In all cases, the initial forcing amplitude of the airfoil was from 0.1
deg to guarantee that the system began its released oscillations outside the free-play region.

Figure 11 shows pitch time history and phase plane for reduced velocities of 2, the system does not enter a limit cycle,
but to the stable equilibrium position.

Note that the flutter point of the system has dropped signicantly, from U∗ about 4.5 without free-play, to around 3 with
the free-play. In this sense, the addition of free-play has been highly destabilizing. A similar case to an NACA64A010
was observed in Kousen and Bendiksen (1994).
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Figure 10 – Free-play pitch limit cycle for U∗ = 3.5.
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Figure 11 – Free-play pitch limit cycle for U∗ = 3.
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Figure 12 – Free-play pitch limit cycle for U∗ = 2.

CONCLUSIONS

The time marching aeroelastic analysis has been tested on a symetric pitch plunge airfoil problem. The unsteady
analysis confirm the applicability of the CFD code for time stepping strategy and the effect of mesh refinement on solution.

The stability boundary on the medium grid was carried out and shows discrepencies compared with Hopf bifurcation
method for flutter boundary given by Badcock, Woodgate and Richards (2004). To verify the time-integration aeroelas-
tic algorithm, is necessary to consider the effect of grid refinament and time-marching aeroelastic calculations for the
NACA0012 airfoil at zero initial incidence.

Adding torsional free-play to a typical section model in transonic flow proved strongly destabilizing. In the case
studied, the linear structural flutter speed decreased and limit cycle amplitudes for U∗ values above the flutter point were
larger than the corresponding cases without free-play. These tests cases have presented the capability of the integrate CFD
and structural program to predict nonlinear effects like LCO. However, the free-play is a discountinuous nonlinearity it
is crucial that the system be integrated to the exact point where the change in stiffness occurs. In this sense, next steps
with free-play nonlinearities will concentrate a similar state-space model to be developed using an alternative integration



XII DINAME

scheme.

The validation of the present method for time-integration aeroelastic analysis represents only an intermediated step in
the developement of a general nonlinear tools capable to study aeroelastic stability problems using modern CFD codes.
During this development, Hopf bifurcation analysis for flutter boundary on transonic flow will be considered. This work
developments will provide the basis for further advance to complete analysis of stability and bifurcation like LCO and
chaos on transonic regime.
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