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Abstract: Subject of this paper is a method for consideration of control variable limits of single actuators in a redundant
driven kinematic structure of a wheeled mobile robot (wmr). It is assumed that the desired robot state is given by the
translational and rotational velocity of a coordinate system fixed to the robot frame. With the assumption of rigid body
elements, motion is possible only when the kinematic constraints due to redundancy in actuation are met. According
to the kinematic design the wmr reference point motion results in different set value characteristics for the steering
actuators. This way limited actuation dynamics of single actuators influence the reachable state region for the complete
structure. In case of a wmr moving in the horizontal plane the instantaneous center of rotation of all wheels must
coincide, which limits the change of wmr state to a region determined by the dynamics of the steering actuators. By
determination of the non feasible states of the single actuators a combination of all non feasible states by inversion
results in the valid set value region. This method can be used in command generation for dynamically demanding feasible
trajectories, as well as to limit set values generated by higher level control loops to feasible ones. In case the limits for
valid commands are violated an alternative command can be generated, which in this example is closest to the original
command. Furthermore this procedure provides a solution for singular operating points, when the instantaneous center
of rotation approaches one of the steered wheels as the dynamic constraints of this wheel are considered in the final
command. The paper describes the determination of the valid region for actuating commands in detail. Furthermore the
generation of alternative feasible commands is presented. The efficient implementation to a µ-controller is described.
Experimental results with an 8-DOF wheeled mobile robot prove the effectiveness of this approach.
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INTRODUCTION

In wheeled mobile robots moving in the horizontal plane various locomotion kinematics have been developed each
having assets and drawbacks (Campion et al. (1996)). In order to fulfil specific tasks with these robots the higher order
control loop must be able to execute drive commands. Because the specialities of the kinematic structure of the robot
is not necessarily used for fulfilment of the task, the inter operability of algorithms and the application of algorithms on
different platforms demand a well defined interface between higher order control loops and the locomotion platform. In
this area the unicycle kinematic as interface has been proven quite powerful, which is the reason it is used in a variety of
robotic projects (Oriolo et al. (2002); Luca et al. (2000); Horn (1997)). The unicycle kinematic reduces the robot model
to a single wheel in the center of the robot for which drive commands in form of velocities in x- and y-direction as well as
the angular velocity around the vertical axis are given.

When leaving the specialities of the kinematics behind there is no common way to account for limitations of the
locomotion system, which are due to the kinematic structure except strong limitations for vx, vy and ω , reducing the
dynamic potential of the robot and the dynamics in robot control. When dealing with redundantly driven kinematic
structures kinematic constraints are to be met. Assuming rigid bodies the robot can operate only with a consistent set of
actuation variables. This means that each actuator must be controlled precisely in order to enable a coordinated movement
of the robot. In dynamically demanding trajectories single actuators may approach saturation points. The constraints are
violated and coordinated motion of the robot becomes impossible.

In the following a geometric based algorithm is presented, which offers the possibility to check the drive command
for the next time step based on the desired drive command and the current state of the robot. It accounts for the control
variable limits and suggests an alternative feasible drive command in case any constraints are violated.

The algorithm is based on the principle of the instantaneous center of rotation, which demands that the instantaneous
center of rotation of all wheels must coincide in order achieve coordinated movement of the robot (Bhatt et al. (2004)).
The algorithm inherently solves the problem of singular points when the instantaneous center of rotation approaches one
of the steered wheels, as the dynamic constraints of this wheel are considered in the alternative command.

Although an analytical solution to the problem is chosen the algorithm is computational efficient. Experimental
results show the effectiveness of the algorithm applied to an 8-DOF redundantly driven mobile platform (Abdellatif
et al. (2002, 2003)). In section KINEMATICS some basic kinematic equations are shown to introduce nomenclature
to the reader. Section CONTROL VARIABLE LIMITS introduces the actuator saturation limits and presents how to
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check for violation of these limits. In the following section COMMAND GENERATION UNDER CONSTRAINTS
it is described how to substitute a desired drive command by a feasible alternative one. Section EXPERIMENTAL
RESULTS describes the setup of the wheeled mobile robot for showing the effectiveness of the algorithm and some
experimental results. Finally the CONCLUSIONS section summarizes the results of this work.

KINEMATICS

The interface between higher order control loops and the robotic platform is derived from the unicycle kinematics.
However, the drive system of the mobile robot consists of a number of driven and steered wheels. The exemplary kinematic
structure, with four driven and steered wheels is depicted in Fig. 1. The algorithms presented here are also valid for
non symmetrical kinematic structures. As the preferred direction of travel is heading towards the y-axis, angles are
calculated mathematically positive starting at the y-axis. According to the rigid body assumption, movement is only
possible if kinematic constraints are met. For a mobile platform with nonzero dimensions the instantaneous center of
rotation constitutes the constraints formulation. Given the instantaneous center of rotation ~m and the rotational velocity ω
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Figure 1 – Robot kinematics.

the velocity~v of point ~p in a R2 environment is derived from

~v =
(

0 −ω

ω 0

)
·

(
rx
ry

)
or

= ΩΩΩ · ~r ,

(1)

with~r being the vector from ~m to ~p. Given a desired robot state consisting of~v and ω , the instantaneous center of rotation
is calculated by

~r = ~p−~m = ΩΩΩ
−1 ·~v ∧ ω 6= 0 or (2)

~m = . . . . . . = ~p−ΩΩΩ
−1 ·~v ∧ ω 6= 0 , (3)

with

ΩΩΩ
−1 =

(
0 1

ω
−1
ω

0

)
∧ ω 6= 0 . (4)

To calculate the wheel angles ϕi and velocities ~vwh,i from the desired robot state the location of the wheel ~wi within the
robot frame must be known:

~vwh,i = ΩΩΩ · (~wi−~m) (5)

tanϕi =
−vx,i

vy,i
(6)

ωwh,i =
|~vwh,i|
rwh,i

(7)

As the wheel is driven in both directions the calculation of the velocity is not distinct,

~vwh,i(ϕi,ωwh,i) =~vwh,i(ϕi±π,−ωwh,i) , (8)

which is advantageous because in certain driving maneuvers reducing the steering angle necessary by π

2 . To avoid ambi-
guities the direction of the wheel velocity is used instead of the real steering angle. It is essential that the wheel steering
angle ϕi has low control error, as otherwise coordinated movement of the robotic platform is impossible.



H. Blume and B. Heimann

CONTROL VARIABLE LIMITS

As stated before the coordination of the wheel steering angle is essential for a consistent state of the robot. The
dynamics of the steering angle is limited which leads to a problem in dynamically demanding trajectories: If one of the
wheels fails in adjusting the steering angle, the kinematic constraints are violated and coordinated movement of the robot
becomes impossible. Thus in the following it is shown, how to calculate the actuation limits for each single wheel and
what impact these limits have on the maneuverability of the whole structure.

The calculation of the actuation limits is based on a second order model with limited rotational acceleration and
limited rotational speed. First a prediction of the steering angle for the next time step is calculated. The time derivation is
approximated by the first difference quotient:

ϕpred,i = ϕi(k−1)+∆ϕsoll,i(k−1,k) (9)

ϕ̇pred,i = (ϕpred,i−ϕi(k−1)) · 1
T

(10)

The limits around the current wheel state are calculated based on maximum available acceleration in both direction while
accounting for the limits in rotational speed:

∆ϕmin,max,i = (ϕ̇pred,i± ϕ̈i
∗
max ·T ) ·T with (11)

ϕ̈
∗
max,i =

{
ϕ̈max,i, for (|ϕ̇pred,i|+ ϕ̈max,i ·T ) < ϕ̇max,i

(ϕ̇max,i−|ϕ̇pred,i|) · 1
T otherwise

(12)

The actual steering angle limit for the next time step is calculated as a sum of the predicted state ϕpred,i and the valid area
around it ∆ϕmin,max,i. The area of valid steering angles for one wheel is depicted in Fig. 2(a) and calculated according to

ϕmin,max,i = ϕpred,i +∆ϕmin,max,i . (13)

The beam connecting from the center of the wheel towards the instantaneous center of rotation is perpendicular to the
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Figure 2 – Control variable limits: a) Valid steering angles for the next time step. b) Valid locations for the
instantaneous center of rotation in the next time step. c) Combination of the actuation limits for each wheel.

steering angle. This way, a valid area for the instantaneous center of rotation can be calculated from the actuation limits of
the wheel as depicted in Fig. 2(b). The angle of the beam towards the instantaneous center of rotation is calculated from
Eq. (14)

αM,i =−arctan
(

mx−wx,i

my−wy,i

)
. (14)

With this a condition for the area of valid steering angles for the next time step is given according to

ϕmin,i ≤ αM,i−
π

2
≤ ϕmax,i

vwh,min,i ≤ vi ≤ vwh,max,i

 for i ∈ 1,2,3,4 . (15)

Adding up the condition for each wheel leads to the resulting area of valid positions for the instantaneous center of rotation
as depicted in Fig. 2(c). The condition can be tested independently for each wheel, by comparison of αM,i, which results
from the desired robot state, with ϕmin,max,i, resulting from the current robot state, according to Eq. (15). In order to
consider the above mentioned limits, when creating a drive command, not only a given desired state must be checked
for violation, but the area of position for valid commands must be known. In the following the calculation of borders of
the limiting area is derived. For each wheel there is an upper and lower limit for the valid area described by a straight
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line dividing valid and non valid areas. When taking into account a second wheel, crossings will occur. Given the valid
segment of one wheel which is represented by two limiting straight lines, the limiting line from a second wheel will cross
according to five different cases (see Fig. 3(a)). The valid and non valid segments of a straight line are calculated as
follows. Intersection points between the number of lines must be calculated. Given a straight line Gi and a straight line
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Figure 3 – Section of limiting lines. a) Modes of section. b) Section Detail.

G j, which as marginal case crosses the instantaneous center of rotation ~m (compare Fig. 3(b)),

Gi : ~p = ~wi + ki ·~ui with ki ∈ R (16)
G j : ~m = ~w j + k j ·~u j with k j ∈ R (17)

the intersection point~s is determined by k j,S for G j and ki,S for Gi in

~m = ~w j +(k j,S + k j
∗) ·~u j (18)

with elements

mx = w j,x +(k j,S + k j
∗) ·u j,x and (19)

my = w j,y +(k j,S + k j
∗) ·u j,y , (20)

changing the reference point of the line equation to the intersection point. To check wether an arbitrary instantaneous cen-
ter of rotation ~m meets the constraint ϕmin,i + π

2 ≤ αM,i which is defined in Eq. (15) one can use Eq. (14) with substitution
of ~m by Eq. (19 & 20)

tan
(

ϕmin,i +
π

2

)
≤−

(
w j,x +(k j,S + k j

∗) ·u j,x−wi,x

w j,y +(k j,S + k j
∗) ·u j,y−wi,y

)
. (21)

Non valid section are determined by variables k∗j which do not meet the condition Eq. (21). With assumption (a):

w j,y +(k j,S + k j
∗) ·u j,y−wi,y > 0 (22)

Eq. (21) transforms to

(k j,S + k j
∗) ·

[
u j,x +u j,y · tan

(
ϕmin,i +

π

2

)]
≤ (w j,x−wi,x)+(w j,y−wi,y) · tan

(
ϕmin,i +

π

2

)
. (23)

With assumption (b):
u j,x +u j,y · tan

(
ϕmin,i +

π

2

)
> 0 (24)

Eq. (23) transforms to

k j
∗ ≤

(w j,x−wi,x)+(w j,y−wi,y) · tan
(
ϕmin,i + π

2

)
u j,x +u j,y · tan

(
ϕmin,i + π

2

) − k j,S . (25)

If one of the assumptions is violated, in each case the relational operator obverts. Both assumptions violated, the result
stays the same. The testing result is determined by the sign of k∗j :

• k j
∗ ≤ 0:

Valid points are located in negative direction from intersection, non valid points are located in positive direction
respectively.

• k j
∗ ≥ 0:

Valid points are located in positive direction from intersection, non valid points are located in negative direction
respectively.
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This way for each straight line the direction of valid and non valid instantaneous centers of rotation is identified. As
this assignment switches in the wheels steering center the location of intersection of the crossing straight line must be
considered. Furthermore, the relationship between the angles of crossing and crossed straight line determines, wether
the crossing lines switches in positive or negative direction into the non valid section. Summing up: the solution to the
problem is deduced from the position of the intersection and the angle difference of the crossing lines.

The subsumption of these conditions lead to a decision matrix according to Fig. 4, which for lower (4(a)) and upper
(4(b)) limit depends on the sign of the angle-difference ∆αi, j and of the location of intersection on the straight line ki,S.
This sequence is rather efficient, as it depends on two comparisons and the determination of one point of intersection.
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Figure 4 – Determination of valid and non valid segments by simple comparisons. a) Configurations for
αi,min ≤ αi . b) Configurations for αi ≤ αi,max .

This information leads to knowledge about position and size of non valid sections. The combination of sections
violating at least one constraint after inversion delivers valid segments: a section which is rendered void cannot become
valid in the following. The sections not determined as void must meet all constraints. The combination of the valid
segments of all lines represent the area of valid locations for the instantaneous center of rotation for the next time step.
The combination of segments is depicted in Fig. 5.
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Figure 5 – Construction of valid segments. a) Composition of non valid sections. b) Resulting valid section
between P5 and P6.

COMMAND GENERATION UNDER CONSTRAINTS

The algorithm described in the previous chapters is capable of identifying non feasible drive commands which violate
dynamic constraints due to set value limitations. As a region of valid drive commands is calculated with the region for the
instantaneous center of rotation, a non valid drive command can be substituted by a valid one. The distance between both
instantaneous centers or rotation is calculated by

~d = ~m∗−~m . (26)

Here the optimum substitute is chosen as a command whose position of the instantaneous center of rotation is closest to
the valid region. The criterion for optimality is expressed as

d = ‖~m∗−~m‖ or

d =
√

(mx∗−mx)
2 +(my∗−my)

2 (27)
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for the error between the original command with ~m∗ and the substitute ~m. The minimum distance can only be determined
on the edge of the valid region, which induces that ~m ∈ Gi, and by

Gi : ~m = ~wi + ki ·~ui mit ki ∈ R

with

mx = wi,x + ki ·ui,x and
my = wi,y + ki ·ui,y

changes the optimality criterion to

d =
√

(mx∗−wi,x + ki ·ui,x)
2 +(my∗−wi,y + ki ·ui,y)

2 . (28)

The optimum substitute can be determined analytically by calculating the distance of the instantaneous center of rotation
from a line (see Fig. 6). For those line segments, that cannot be linked to the instantaneous center of rotation by an
orthogonal vector, because the resulting point is not within the limits of the edge of the valid section, the minimum is
either the left or right segment limit of the edge of the valid section as shown in Fig. 6(b).
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Figure 6 – Optimality criterion.

It is assumed, that not only the steering wheel dynamics, but also the dynamics of the robots translational velocity
is limited. To generate a substitute drive command, not only the instantaneous center of rotation but also the substitute
angular velocity is determined. Here the norm of the desired translational robot velocity is used to calculated the optimized
angular velocity and the resulting optimized translational velocities for the robot:

|~vrobot |=
√

ẋ2
des + ẏ2

des (29)

ωopt =
|~vrobot |√

m2
opt,x +m2

opt,y

(30)

~vrobot,opt = ~ωopt ×−~mopt (31)

Special Cases

The algorithm described so far works only while moving with nonzero angular velocity, but fails to cover the case
when moving straight. The instantaneous center of rotation, which is mandatory for the algorithm to work, moves towards
infinity, when moving with zero angular velocity. However, in practise, the instantaneous center of rotation is assumed
on a large but finite distance to the robot, leading to a negligible steering angle. This measure has only minor numerical
effect, allowing to work with the algorithm as described.

A second effect is as follows: The influence of the algorithm may lead to unwanted behavior if the instantaneous center
of rotation switches from one side of the robot towards the opposite side, which occurs, when following an s-shaped path.
For a short time purely translational movement occurs, which arouses areas of feasible instantaneous centers of rotation
on both sides of the robot. Here the sign of the angular velocity switches. When the angular velocity approaches zero, the
instantaneous center of rotation departs from the robot. It switches sides in infinity and approaches the robot from infinity
on the opposite side.

If the feasible instantaneous center of rotation cannot follow the desired one a case may occur, in which the instanta-
neous center of rotation of the desired drive command Mdes has already switched the sign of the angular velocity, while
there is no feasible area on that side of the robot as depicted in Fig. 7. The path of the instantaneous center of rotation,
which is meant to move through infinity, will be changed according to the algorithm such, that the shortest distance be-
tween the feasible and desired one is chosen, leading it into the wrong direction through the center of the robot Mopt,1.
To avoid this behavior, the plane is divided by the center axis of the robot into two parts. If the instantaneous center of
rotation crosses this axis from a distance with certain threshold, the above mentioned case is assumed, and the instanta-
neous center of rotation is lead through infinity Mopt,2. If the actual instantaneous center of rotation is very close to the
axis when switching sides, direct crossing of the axis is permitted.
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Figure 7 – Unwanted behavior while traveling on s-shaped path.

EXPERIMENTAL RESULTS

The algorithm described above is implemented on an experimental platform shown in Fig. 8(a). The platform is
equipped with four identical wheel modules, which are actively driven an steered. The vertical steering axis of the wheel
module runs through the center of the wheel. The low level control algorithms are implemented on an a mpc-555 µ-
controller running RTOS-UH real time operating system. The control structure is depicted in Fig. 8(b), the software
modules implemented on the µ-controller are highlighted in grey color. The overall setup contains additional processing
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ẋopt , ẏopt ,ωopt

Inverse Kinematics

ϕopt,1...4 ωwh,opt,1...4 ϕ1...4 ωwh,1...4

GR(z)

GR(z)
ωwh,i

ϕi

Wheel module controller

(b)

Figure 8 – Experimental setup. a) Wheeled mobile robot. b) Control structure, including the algorithm introduced
in this paper.

units for higher order control loops. A path planning module calculates a path represented by straight line and polar spline
segments. The Path is forwarded to the pilot, which is in charge of path control (the localization module it relies on for
position information is not shown here). The interface between the pilot and the mobile platform is done according to
the unicycle kinematics, containing translational velocities ẋdes, ẏdes and the angular velocity ωdes around the vertical
axis, each specified within a platform fixed coordinate system. The desired velocities are fed into the algorithm, which
is presented in this paper along with the measured steering angles ϕ1...4 and wheel velocities ωwh,1...4 of each wheel. The
output of the algorithm is an optimized set of velocities ẋopt , ẏopt and ωopt , which is fed into the inverse kinematics
module to acquire set values for steering angles ϕopt,1...4 and wheel velocities ωwh,opt,1...4. These set values are controlled
within single axis control loops for each wheel module (wheel module controller). All state variables can be logged to
acquire measurement data.

The algorithm has been tested on the mobile platform presented above with an exemplary path shown in Fig. 9(c).
The functionality of the algorithm is proven, as depicted in Fig. 9. In Fig. 9(a) steering angles ϕ1...4, steering velocities
ϕ̇1...4 and steering accelerations ϕ̈1...4 are depicted without limiting dynamics. The same trajectory is recorded in Fig. 9(b)
with limits applied to |ϕ̇1...4,max|= π

2 ·
1
s and |ϕ̈1...4|= 10π

2 · 1
s2 . The figures show, that the wheels states are kept within the

desired limits. As the desired set values are altered there is an influence on the robot path. However, the desired velocities
are determined as non feasible, which justifies manipulations. Path deviations are assumed to be corrected in higher order
control loops, which can be shown to work in practise. When plotting the path, deviations are very small as shown in
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Figure 9 – Influence of algorithm. a) Without limits. b) With limits. c) With limits.

Fig. 9(c). The additional deviations of the algorithm presented can be neglected, which renders the algorithm applicable
in a general sense.

CONCLUSIONS

In this paper a computationally efficient method for consideration of control variable limits in redundantly actuated
wheeled mobile robots is presented. The algorithm takes into account the limited dynamics of the steering angle, mini-
mizing violations of the kinematic constraints which may lead to non coordinated movement of the robot. The method is
based on the calculation of a feasible area to place the instantaneous center of rotation in the next time step such, that every
single wheel is capable of reaching the desired state. In case the desired drive command is not executable, an alternative
drive command is calculated.

The method was tested on an exemplary wheeled mobile robot. The average execution time using a mpc-555 µ-
controller was at 3.3 ms, which is far beyond the control rate of 20 Hz. Experimental results show, that the limits adjusted
are met and that path deviation induced by the algorithm can be corrected by higher order control loops. Usage of the
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algorithm not only for optimization of a given command, but also for in path planning can be used. This especially refers
to section CONTROL VARIABLE LIMITS where the feasible area can be used as a side condition in the path planning
algorithm.
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