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Abstract: Flight Path Reconstruction (FPR) is a technique applied to aircraft state and parameter identification to 

generate a consistent database, to be used in any subsequent application, commonly an aerodynamic stability and 

control derivative determination. This procedure assures consistency between flight data and aircraft kinematic 

equations. Air data sensors can also be calibrated simultaneously in a FPR scheme. Different procedures have been 

studied in the literature, even in a batch or a recursive data processing procedure, taking into account process 

and/or measurement noise. Among them, stochastic filtering is an attractive method because it considers process and 

measurement noise and can be used onboard during a flight test execution. Since a complete FPR model is a 

nonlinear problem, the Extended Kalman Filter (EKF) is usually adopted to handle the non-linear filtering problem. 

Nevertheless, one of the main drawbacks of the EKF is the linearization, which requires Jacobians evaluations and a 

sampling rate small enough not to violate linearization assumptions. More recently, other approaches have been 

proposed for nonlinear problems, such as the Unscented Kalman Filter (UKF). In this procedure state and 

covariance are propagated through some deterministically selected sigma points, instead of linearizing the models 

around the estimated trajectory. This paper compares the results obtained with the EKF and the UKF methods in the 

FPR problem, regarding consistency of the results, by using both simulated and flight test data. 

Keywords: Flight Path Reconstruction, nonlinear systems, Extended Kalman Filter, Unscented Kaman Filter, 

Parameter Identification, flight test 

NOMENCLATURE

A = dynamic matrix 

E{} = expected value function 

f = model dynamic function 

H = observation matrix 

h = measurement function 

K = Kalman gain matrix 

k = discrete time index 

Pxy = covariance matrix between signals 

X and Y 

Q = state noise covariance matrix 

R = measurement noise cov. matrix 

t = continuous time 

k = discrete time 

u = control vector 

v = measurement noise vector 

X = sigma point matrix 

x = state vector 

Y = transformed sigma point matrix 

y = observation vector  

z = measurement vector 

W = process noise gain matrix 

Wi
(c,m) = sigma points weighs 

w = state noise vector 

Greek Symbols 

Φ = state transition matrix 

∆t = sampling time 

Θ = vector of unknowns 

α, β, k = UKF parameters 

Superscripts 

T = transpose 

-1 = matrix inverse 

^ = estimated 

- = predicted value 

+ = corrected value 

 

 

INTRODUCTION 

Flight Path Reconstruction technique consists in checking the integrity and consistency of different sets of 

measurement data obtained in a flight test, relating them mathematically. During this process, states and their related 

calibration parameters are obtained simultaneously in a form that all measurement sets are made consistent among 

them considering measurements and models. Estimated states become a new corrected database to be used in any 

subsequent identification problems, for example, stability and control aerodynamic derivatives estimation. As a sub-

product, air data estimated parameters consist also in the calibration parameters to be used by onboard by the air data 

computer. 



Comparison between Unscented and Extended Kalman Filters 

The dynamic model used in a compatibility check analysis, normally in a space state form, comes from the aircraft 

kinematic equations. This model consists of a set of first order ordinary differential equations in which inputs have a 

mathematical rather then physical sense. Command surface inputs are replaced by specific forces and angular rates. An 

important aspect is that, using this approach, the inclusion of any aerodynamic and propulsion forces in the model is 

avoided. All formulations do not transport the inherent uncertainty of those estimates, which are complex to be 

determined and extracted from flight test data with a sufficient degree of confidence. 

On-line analysis is an attempt to validate the test point before concluding the flight. This procedure provides a 

better efficiency and minimizes flight test repetitions. Laban [1] explored this approach using stochastic filtering. 

Recursive methods have adequate characteristics for on-line processing. His work got through the aerodynamic 

derivative determination using the two steps method. Mulder et al. [2] made a review of the flight path reconstruction 

methods and presented some new approaches for the problem. It was pointed out that better results would be obtained 

through the maximum likelihood method, but it did not show any advances regarding Laban’s pure stochastic filtering 

approach. Laban [1] concluded that one of the practical difficulties associated with filtering methods is to choose 

properly process noise statistical properties. 

The most common stochastic filtering method used in a FPR problem is the Extended Kalman Filter (EKF), which 

is an attempt to solve a nonlinear problem using standard Kalman filter equations. This is done by linearizing the 

nonlinear dynamic and output models along the estimated trajectory. This approximation is necessary to propagate 

states and variances and should be reliable enough to represent the nonlinear system. Linearization can be done only if 

Jacobian exists, but this does not hold in specific problems like those which involve discontinuities. Jacobian 

calculation should be done either analytically or numerically. While the first is error-prone for complex problems and 

particularizes the solution, the second requires a numerical procedure properly chosen to guaranty the desirable 

precision. An alternative method to treat the nonlinear stochastic filtering, the Unscented Kalman Filter (UKF), was 

proposed by Julier and Uhlmann [3] [4]. Its main idea is to approximate a Gaussian distribution, calculated after 

transforming some deterministically chosen points, instead of linearyzing a function. Some advantages are [3] [4]: i) 

avoid Jacobian calculation; ii) more realistic state variance estimation; iii) can be applied to non-differentiable 

functions; and iv) is valid for higher-order expansions rather than the standard EKF. 

The main contribution of this work is to compare the EKF and the UKF methods in a Flight Path Reconstruction 

application. Both methods were implemented to run on-line in a flight test prototype as a single pass filter. As FPR 

problem is typically nonlinear the UKF would be more proper to handle this characteristic, nevertheless when the 

sampling rate is small enough the EKF linearization can be accurate enough. The effects of this tradeoff are analyzed 

in a true problem. 

DEVELOPMENT 

1. The Extended Kalman Filter  

The dynamic and measurement mathematical model is assumed to be described by the following continuous-

discrete stochastic equations 
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Functions f ε ℜn
 and h ε ℜm

 are general nonlinear functions; vector x ε ℜn
 is the state vector; u ε ℜl

 is the 

input/control vector; y ε ℜm
 is the output vector and z ε ℜm

 is sampled at discrete points with a uniform ∆t sampling 

time; vectors w and v are process and measurements stochastic noises respectively. Besides being modeled as 

stochastic variables, process noise terms also concentrate some deterministic dynamics from model approximations in 

practice, violating some initial assumptions. Noises are considered zero mean, white and with Gaussian distribution. 

They are also assumed to be independent between themselves and also with respect to the initial condition x(0), more 

precisely 
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The standard Kalman filter addresses only linear stochastic systems and it is not directly applicable to nonlinear 

problems. On the other hand, there are no practical solutions for the general optimal nonlinear filtering problem. An 

artifice to use the Kalman filter equations in a nonlinear problem, with nonlinearities presented either in the dynamic 

or in the measurement model, is to linearize the system around the current state estimates. This approach is named 

Extended Kalman Filter (EKF). For this purpose a corresponding linear system is derived from the original one by 

calculating all necessary Jacobians. When model parameters are to be estimated simultaneously, a new state vector is 

then defined based on the previous state vector and on the proposed parameter vector, therefore resulting in the EKF 

augmented state vector. 

The linearized system is calculated based on equation (1) through the following derivatives 
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With the Jacobians defined in equation (3), and calculating the transition matrix Φ = e
A∆t

, the standard Kalman 

filter equations can be used. The algorithm is divided in two steps [5] [6]: time propagation, and measurement 

correction. These steps are usually named as “prediction” and “correction” respectively. Initial state )0(x̂  and 

covariance matrix P(0) are assumed at first and then are propagated using 

 

)1()()1()()1(

)0),(),(()(ˆ)1(ˆ

1,1,

1

+++≈+

+=+

+
+

+
−

+−
∫
+

kkkkk

dtttfkk

TT

kkkk

t

t

k

k

WQWΦPΦP

uxxx  (4) 

The propagation is done until more information is available from the sensors and can be incorporated in the filter. 

This is the correction phase and it updates, based on the Kalman gain matrix and on the innovations, states and 

covariances as 
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In the next section the Unscented Kalman Filter algorithm is summarized. 

2. The Unscented Kalman Filter 

The Unscented Kalman Filter was developed by Julier e Uhlmann [3] [4]. Its main idea is to approximate a 

probability distribution instead of approximating a general nonlinear function using a linearization process. This is 

done choosing a deterministically set of points, called sigma points, which capture current mean and covariance filter 

estimates. A nonlinear transformation is applied to these points generating a new set of transformed sample. There are 

no restrictions about the actual distribution and a Gaussian distribution can be approximated by calculating the 

predicted mean and covariance based on this transformed data set. Using this procedure it is not necessary to calculate 

Jacobians. The method is described in details in references [3] [4], and here only the algorithm is presented. 

Given the estimated state vector x(k-1)
+
, a set of sigma point vectors (X(k-1))i can be calculated as 

 )1(ˆ))1(( 0 −=− kk xX  (6) 
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where 
ikPn ))1()(( −+ λ  is the ith column of a matrix square root. Since the full matrix is positive definite, a 

Cholesky decomposition can be used to calculate this term. The constant λ is defined as 

 nkn −+= )(2αλ  (9) 

where α and k are design parameters that define the spread of the sigma points. 

After the sigma point matrix X(k-1) is calculated the prediction step is carried out by integrating each column, 

using the dynamic model f(x) and a 4th order Runge Kutta method, for example. The propagated matrix becomes 

 ))1(()( ii kXfk −=X , i = 0,…,2n (10) 

State predicted values can be obtained based on each column of matrix X(k) as 
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where the weighs values m
iW  are calculated as 
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The predicted covariance matrix is calculated as 
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It was considered an additive process noise vector, otherwise the process noise covariance matrix term Q(k) vanish 

in equation (13) and the state vector should be augmented by the noise terms. The weights constants are defined by 
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where β is a design parameter which incorporates prior knowledge about the distribution of the state vector. Once 

computed the predicted states, the predicted output vector is calculated using the measurement model, i.e., 

 ))(()( ii khk XY = , i = 0,…,2n (15) 

and 
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The Kalman gain needs to be calculate to perform the correction step using the definition, via 

 1)()()( −= YYXY kkk PPK  (17) 
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The same comments made to process noise covariance matrix hold for the measurement noise covariance matrix 

R(k) in equation (18). 

Concluding the correction step, the corrected state vector and covariance matrix are computed as 

 ))(ˆ)()(()(ˆ)(ˆ −−+ −+= kkkkk yzKxx  (20) 

and 
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3. Flight Path Reconstruction Formulation 

Four groups of first order differential equations, generally represented in a space state form, are necessary to 

characterize the aircraft motion. Newton’s Law is applied in a rotating aircraft body fixed referential system – 

considering the Earth as flat and as an inertial reference frame. A kinematic model can be derived by substituting 

traditional physical inputs by measured variables, such as specific aerodynamic forces, which mean a summation of all 

aerodynamic and propulsion forces divided by aircraft mass, and body rotational rates. Specific forces can be 

measured by typical accelerometers, preferentially installed in the center of gravity and aligned with body reference 

frame. Among these four set of equations, only the rotational equations of motion are not used in a FPR problem. 

Airspeed information is included in the model through static and total pressure measurements. It is possible to 

establish a dynamic behavior for the static pressure, and relate it to other state variables, assuming the air as a dry and 

perfect gas [9]. All constant parameters are modeled as random walk to allow adequate variation from initial 

conditions, to avoid the associated state error covariance convergence to zero and because the time invariance 

assumption is not fully correct. These equations will just be presented here and other works [7] [8] [9] should be 

sought for details. The dynamic model is then summarized as 
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The extended state vector is 

 x = [ u v w φ θ ψ xE xE hE WN WE WZ Ps bax bay baz bp bq br Kα bα Kβ bβ KPs bPs ], є ℜ25
 (23) 
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and the process noise vector is 

 w = [ wpax wpay wpaz wpp wpq wpr wpWN wpWE wpWz wpPs wpbax wpbay … 

 wpbaz wpbp wpbq wpbr wpKα wpbα wpKβ wpbβ wpKPs wpbPs ], є ℜ22
 (24) 

Measurement error sources could be analyzed individually in detail. Therefore there is a general formulation that 

fits well for most of the typical flight test data cases [10], including air data calibration. As an example, by using this 

framework for the longitudinal specific force measurement, its calibration formula is 

 
axaxaxxaxxm wmbtaKa ++−= )( τ  (25) 

This model contains a scale factor Kax, a bias term bax, a time delay term τax and an additive measurement noise 

wmax. The measured variable is represented by the left side with the subscript m. 

In this work the time delay is not considered and other simplifications were adopted according to each sensor 

characteristic. Bias term is preserved to compensate for cumulative integration errors, when required. 

The output vector was chosen considering the sensor set available and to guarantee system observability. The 

sensors chosen for this work are: i) angle of attack probe; ii) sideslip vane; iii) static pressure probe, conjugated with 

the angle of attack probe; iv) Kiel Pitot for total pressure measurement; and v) GPS receiver for position 

determination. Thus, the measurement model is designed based on a simplified version of equation (25), leading to 
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In equation (26) all xi, yi and zi which appear in the first fourth equations are sensor coordinate positions related to 

aircraft center of gravity. The aerodynamic speeds ua, va and wa are obtained from a subtraction between the inertial 

speed and the wind speed vectors. Terms Ki and bi are scale factor and bias respectively. Based on equation (26), the 

output vector is given by 

 y = [ αm βm Psm Ptm xEm yEm zEm ], є ℜ7
 (27) 

and the parameter vector is 

 Ө = [ bax bay baz bp bq br Kα bα Kβ bβ KPs bPs ], є ℜ12
 (28) 

The measurement noise vector assumes the form 

 v = [ wmα wmβ wmPs wmPt wmxE wmyE wmhE ], є ℜ7
 (29) 
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DATA ANALYSIS 

In this section a comparison between the EKF and the UKF methods is done in a flight path reconstruction 

application using simulated data, generated through a fixed base simulator, and flight test data obtained from a typical 

regional jet prototype flight test. 

1. Simulated Data 

The maneuver chosen to evaluate state and parameter estimation, in a sense of flight path reconstruction and 

simultaneous air data calibration, is the well known wind box [9]. This maneuver provides enough information for this 

purpose using angle off attack and angle of sideslip sweeps and speed variations. Its horizontal profile is characterized 

in figure 1. Simulated data was corrupted by process and measurement noise with typical signal to noise levels found 

in real applications. It was also included bias and scale factor errors in angle of attack, angle of sideslip and static 

pressure measurements. A sampling rate of 0.1s was adopted, which is considered a poor lower bound for 

identification purposes regarding this kind of application. The UKF parameters chosen was α = 1, β = 2, and k = 0 [4]. 

Another EKF and UKF design parameters are the R and Q matrix. While the first was calculated through existing time 

histories, the second was adjusted based on residuals and theoretical innovation bounds analysis and by comparing the 

results with the known simulated values [9]. The same matrixes were adopted for both UKF and EKF methods. 

A low sampling rate could violate the conditions necessary to linearize the model along the estimated trajectory, 

required in the EKF algorithm. Nevertheless a comparison of EKF and UKF estimated time histories, presented in 

figures 2, figure 3 and figure 4, show no significant differences between both results. Although other results are 

available, only those related to angle of attack are presented for conciseness and because they lead to the same 

conclusions. In figure 2 angle of attack estimates by both methods, curves blue and cyan, based on wind and inertial 

speeds states, are practically coincident. The same happens even for the prediction, which means how the output 

equations explain the measurements, curves in yellow and green. Figure 3 depicts the time histories of the angle of 

attack calibration parameters. Only a small difference is observed in the final value for the bias term. Finally figure 4 

exhibits alpha calibration parameters variance, and again no visible difference is observed. 
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       Figure 1 – Simulated flight path.   Figure 2 – Alfa time histories. 
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Figure 3 – Alfa calibration parameters.  Figure 4 – Alfa Calibration parameters variance. 
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All parameter values were obtained through the mean of the last 400 samples of the respective estimated states. A 

comparison between true values and the estimated ones using both methods is shown in table 1. 

Table 1 – Comparison of the estimated calibration parameters by the EKF and the UKF methods with simulated 
data. 

True EKF Error (%) UKF Error(%)

Alfa Scale Factor 0.95 0.995 4.7% 0.9945 4.7%

Alfa Bias (deg) -5 -5.2392 4.8% -4.9999 0.0%

Beta Scale Factor 0.95 0.9499 0.0% 0.9584 0.9%

Beta Bias (deg) 2 1.9088 -4.6% 1.8914 -5.4%

Static Pressure Scale Factor 0 0.0013 - 0.0013 -

Static Pressure Bias (Pa) 500 505.3053 1.1% 505.8184 1.2%  

A comparison between estimated variances, calculated as a mean of the last 400 values, for the EKF and the UKF 

is made in table 2. 

Table 2 – Comparison of the estimated state variances by the EKF and the UKF methods with simulated data. 

State Unit Variance EKF Variance UKF
Difference based

on the EKF (%)

u  m/s^2 7.59E-04 8.12E-04 6.9%

v  m/s^2 2.63E-02 2.79E-02 6.1%

w  m/s^2 3.34E-02 3.49E-02 4.5%

phi  deg^2 5.84E-06 5.70E-06 -2.4%

theta  deg^2 2.20E-06 2.28E-06 3.5%

psi  deg^2 1.56E-06 1.65E-06 5.9%

x  m^2 3.15E-04 3.17E-04 0.4%

y  m^2 2.74E-04 2.77E-04 1.1%

h  m^2 3.20E-04 3.20E-04 0.0%

Wn  m/s^2 4.40E-03 4.40E-03 0.0%

We  m/s^2 2.60E-03 2.60E-03 0.0%

Wu  m/s^2 2.51E-02 2.49E-02 -0.8%

psi  Pa^2 1.05E+01 1.05E+01 0.2%

bax  m/s^2^2 1.14E-04 1.13E-04 -0.8%

bay  m/s^2^2 2.10E-04 2.05E-04 -2.3%

baz  m/s^2^2 3.20E-06 3.14E-06 -1.6%

p  rad/s^2 2.73E-09 2.73E-09 0.0%

q  rad/s^2 2.71E-09 2.71E-09 -0.1%

r  rad/s^2 2.59E-09 2.59E-09 0.0%

Ka  Adm 4.16E-05 4.22E-05 1.4%

ba  deg^2 1.02E-06 1.01E-06 -1.0%

Kb  Adm 2.00E-05 2.06E-05 3.1%

bb  deg^2 7.25E-07 7.42E-07 2.4%

KPs  Adm 3.99E-09 3.99E-09 -0.1%

bPs  Pa^2 1.09E+01 1.09E+01 0.2%  

Julier and Uhlmann [3] pointed out that one of the main drawbacks of the Extended Kalman filter is that sometimes 

the algorithm estimates unrealistic state variances, which become excessively small. This behavior was not observed in 

this analysis and both methods presented similar results. 

2. Flight Test Data 

For performance comparison with real data, a regional jet instrumented prototype was used to generate all data 

necessary for the analysis. Instead of a wind box maneuver, it was selected a condensed one which contains angle of 

attack and angle of sideslip excursions followed by an 180
o
 turn. This trajectory is presented in figure 5. Although 

there are no true values to be compared with, filters results are confronted against a calibrated data based on a 

reference method proposed by Olson [11]. This method has some shortcomings because it requires special flight 

conditions – low turbulence level, constant horizontal wind and no vertical wind– as well as special instrumentation. A 

sampling rate of 0.015s was adopted and the UKF design parameters were the same adopted by the simulated case. 

The same R and Q matrix used in the simulated case were adopted for the flight data analysis. 

The results obtained with real flight data were similar to those obtained with simulated data, as presented in figures 

5 to 8. No significant difference between both methods is evident except for a small disagreement in the initial samples 

in figure 6 and figure 7. It seems that at the beginning the UKF estimated states are closer to the true values than the 

EKF estimates. But, as long as the parameters and states converge, and the estimated trajectory becomes more 

realistic, the UKF and EKF estimates assume similar values. 
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       Figure 5 – Aircraft  flight path.   Figure 6 – Alfa time histories. 
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Figure 7 – Alfa calibration parameters.  Figure 8 – Alfa Calibration parameters variance. 

Estimated variances are compared in table 3 and again both methods presented similar results. Table 4 compares 

estimated calibration parameter for angle of attack and angle of sideslip against the reference method. 

Table 3 – Comparison of the estimated state variances by the EKF and the UKF methods with flight test data. 

State Unit Variance EKF Variance UKF
Difference based

on the EKF (%)

u  m/s^2 2.69E-04 2.73E-04 1.4%

v  m/s^2 7.20E-03 7.20E-03 0.0%

w  m/s^2 3.00E-03 3.10E-03 3.3%

phi  deg^2 9.47E-07 9.48E-07 0.1%

theta  deg^2 3.53E-07 3.51E-07 -0.6%

psi  deg^2 8.14E-07 8.08E-07 -0.6%

x  m^2 6.47E-05 6.51E-05 0.6%

y  m^2 1.61E-04 1.62E-04 0.6%

h  m^2 4.88E-06 4.97E-06 1.7%

Wn  m/s^2 3.10E-03 3.10E-03 0.0%

We  m/s^2 6.00E-03 6.00E-03 0.0%

Wu  m/s^2 4.40E-03 4.40E-03 0.0%

psi  Pa^2 1.38E+01 1.48E+01 7.4%

bax  m/s^2^2 2.92E-05 2.90E-05 -0.8%

bay  m/s^2^2 3.00E-05 3.01E-05 0.6%

baz  m/s^2^2 5.16E-06 5.16E-06 -0.1%

p  rad/s^2 6.26E-11 6.25E-11 -0.2%

q  rad/s^2 5.16E-11 5.17E-11 0.1%

r  rad/s^2 5.39E-11 5.41E-11 0.2%

Ka  Adm 7.66E-06 7.59E-06 -1.0%

ba  deg^2 4.45E-07 4.30E-07 -3.4%

Kb  Adm 2.43E-06 2.47E-06 1.9%

bb  deg^2 2.83E-07 2.72E-07 -3.6%

KPs  Adm 9.16E-07 9.10E-07 -0.6%

bPs  Pa^2 3.40E+01 3.40E+01 0.0%  



Comparison between Unscented and Extended Kalman Filters 

Table 4 – Comparison of the estimated calibration parameters by the EKF and the UKF methods with flight test 
data. 

Reference EKF Difference (%) UKF Difference (%)

Alfa Scale Factor 1.84 1.805 -1.9% 1.8025 -2.0%

Alfa Bias (deg) -14.8 -15.3976 4.0% -15.3516 3.7%

Beta Scale Factor 1.55 1.4882 -4.0% 1.4893 -3.9%

Beta Bias (deg) 0.43 0.5237 21.8% 0.4842 12.6%  

An analysis over the results shown in Tables 3 and 4 The UKF results are a little closer to the reference but both 

EKF and UKF results are similar. 

CONCLUSION 

The FPR application is essentially a nonlinear problem and the EKF has been extensively applied in its solution. 

The method has some shortcomings because requires Jacobian calculations to linearize the models and an appropriate 

sampling rate not to violate linearization assumptions. The UKF has been presented as an alternative method to solve 

nonlinear stochastic filtering problems and has some advantages over the EKF because does not requires Jacobians 

calculation, instead, approximates Gaussian distributions propagating some deterministically selected point, the sigma 

points. 

In this paper it was made a comparison between the Extended Kalman Filter and the Unscented Kalman Filter 

applied to a Flight Path Reconstruction and simultaneous air data calibration application. Both methods were tested 

with simulated data and real flight test data. 

Both filter performance were good and no essential difference between the results were observed. It is proposed, as 

an extension of this work, to evaluate the influence of lower sampling rates over the results using the EKF and the 

UKF. 
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