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Abstract: Rotating machines are very important on the productive processes and each day the processes demand ma-
chines to operate for longer periods, with greater loads and at higher speeds. Bearing is the component that supports
all the energy of loads and impacts. This works aims to study some effects of unbalance and clearance on the bearings
of an overhung rotor. A rotor-bearing system is modeled as a continuous system. The discretization of the continuous
system is conducted by the Galerkin method. The system is approximated by Finite Element Method and reduced using
the Normal Modes and also the Karhunen–Loève Decomposition. The forces acting on the bearings of an overhung
rotor and the Fast Fourier Transform (FFT) of the transient response are computed. Numerical results are qualitatively
compared with real cases of machines showing good agreement.
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NOMENCLATURE

A = area of the transversal section, m2

a, b = coefficients, dimensionless
c = clearance, m
[C] = damping matrix, N.s/m
d = damping coefficient, N.s/m
dh = housing damping N/m
E = Young Modulus Pa
eper = specific residual unbalance,
kg.m/kg
f = transversal force per unit of length,
N/m
F = force vector, N
g = acceleration of gravity, m/s2

G = balance quality grade, mm/s
[G] = gyroscope matrix, N.s/m
I = inertia moment of the transversal
section, m4

Ir = rotor inertia moment, kg.m2

kh = housing stiffness, N/m
[K] = stiffness matrix, N/m
L = length, m
[M] = mass matrix, kg
M f = bending moment, N
Mr = rotor mass, kg
N = number of elements used in the
approximation
P = axial force, N
Q = shear force, N
[R] = correlation matrix, m2

u = transversal displacement, m
u̇ = derivative of u, m/s
U = unbalance, kg.m
[U ] = dynamic response, m

xB3 = position of the displacement at
bearing number 3, m
xB4 = position of the displacement at
bearing number 4, m
X = displacement vector, m

Greek Symbols
Ω = speed of shaft rotation, rad/s
ρ = density, kg/m3

φ = trial function

Subscripts
1 = relative to the direction 1
2 = relative to the direction 2
per = relative to permissible unbalance
h = relative to the bearing housing
r = relative to the rotor

INTRODUCTION

Each day the quest for efficiency demand machines to operate for longer periods, with greater loads and at higher
speeds. Bearing is the component that supports all the energy of loads and impacts.

Unbalance, misalignment and clearance/looseness are responsible for almost 90% of rotating machines vibration pro-
blems. Bearing is the component that stands the effects of these vibrations. The effect of clearance and unbalance on
the dynamics of a rotor is investigated in many recent papers. Concerning internal radial roller bearing clearance, Harsha
(2005a and 2005b), Sinou and Thouverez (2004) and Tiwari et al. (2000) investigate this problem. All of them consider
the nonlinearities caused by hertzian contact and develop lumped parameter system models. Karlberg and Aidanpää (2003
and 2004) and Vakakis and Azeez (1999) consider clearance between bearing and housing and clearance between bearing
and shaft, respectively. All of these articles center their discussions around chaotic motion, Poincaré maps, bifurcation
diagrams and Lyapunov exponents. In this paper, on the other hand, it is used the frequency domain to characterize some
of the problems. It is acknowledge in this paper that the most used tool to identify the causes of rotating machine problems
through vibration analysis is the Fast Fourier Transform (FFT).

The great limitation of lumped parameter system models is that there is no scheme to compute the error of the model
besides the difficulty to choose the parameters. They certainly help to understand qualitatively the problems, but can not
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describe the effects quantitatively since there is no scheme of approximation. Continuous models do not have this limi-
tations; when discretization is made with finite elements the properties that appear are material properties and there is an
intrinsic scheme of approximation. On the other hand, finite element rotor analysis usually results in large dimensionality
problems what turns the transient solution very time-consuming. It might include many insignificant modes because of the
widely spread eigenspectrum. Vakakis and Azeez (1999) used the Normal Modes and Karhunen–Loève Decomposition
(KLD) to reduce the problem.

KLD consists in detecting spatially coherent modes in the dynamics of a statio-temporally varying system. It is a
powerful and elegant way of obtain an approximate description of reduced dimension of a process. KLD is first found
in the literature as PCA (Principal Component Analysis) as a tool to signal analysis. Later it was extended for image
processing and, then, to diverse applications in engineering: turbulence, control in chemical engineering, oceanography,
etc (Holmes, 1996). In mechanical engineering the first applications were in turbulent flows, Lumley, 1970.

This technique aims to obtain the dominant characteristics of a signal (for example a dynamic response) based on
experimental data or numerical data. It uses statistics to form a basis to project the dynamics that inherit most of its
coherence.

The Group of Vibration Analysis of PUC-Rio is working with KLD applied to structural dynamics and non–linear
systems for some time, Sampaio (2001), Wolter (2001), Wolter (2002). Recently some works have been published by
Sampaio, in 2004, 2005 and 2006.

In this paper a continuous model of an unbalanced overhung rotor with clearance is simulated. Springs and dashpots
symmetrically distributed on the shaft perimeter will introduce the non–linearities. A initial discretization is made with the
Finite Element Method to compute the modes, according to a given prescription, that will be used to project the dynamics
and to reduce the continuous model.

CASE STUDIED

Blower - nominal rotation speed 1185 RPM

It is considered the case of the blower showed in Figure 1:

Figura 1 – Blower

The vibration was measured with an accelerometer at the position 4H (horizontal), Figure 1. The velocity is obtained
by integration. Figure 2 shows the frequency spectrum.
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Figura 2 – Frequency spectrum of velocity. (a) January 30th 2005, (b) February 9th 2005

A piece of metal got stuck on a rotor blade at January 30th 2005 thus raising the unbalance. The effect of clearance is
register in the frequency spectrum, Figure 2a. One can see many harmonics (2X, 3X,..).

After the removal of the piece of metal from the blade and the performance of field balancing, the harmonics almost
disappeared, Figure 2b. The residual unbalance accomplished was 1,7 mm/s 0-Peak.

Unbalance x Bearing Life

To determine the rotor unbalance one uses the balance quality grade (G), an index derived from accumulated practical
experience with a large number of different rotors, see ISO 1940/1.

In general the permissible residual unbalance (Uper [kg×m]) for rotors is proportional to the rotor mass (Uper ∼Mr).
So permissible specific residual unbalance is defined as: eper = Uper/Mr. The experience shows that permissible specific
residual unbalance varies inversely with the speed of the rotor. (Uper ∼ 1/Ω). Finally:

G = eperΩ1000 [mm/s] (1)

Where Ω is the rotation speed in rad/s and eper=[kg×m/kg].

In the numerical analysis performed in the following sections G will be chosen and the unbalance is calculated:

U =
GMr

Ω1000
[kg×m] (2)

Mass unbalance in a rotating system often produces excessive synchronous forces that reduce the life span of various
mechanical elements.

For example, consider a machine with balance quality grade G = 6,3 and speed of 2000 RPM, with spherical roller
bearings (SKF 6917). The bearing life can be calculated with or without the extra load due to unbalance.

Considering a load of 1757 Newtons the bearing life will be 21,4 years. The centrifugal force due to unbalance for
this case is 132 Newtons. The additional load due to unbalance reduces bearing life by 27% (15,6 years). This calculation
is not accounting for excessive clearance and shock. Depending on the machine characteristics and speed this reduction
can be smaller or bigger.

WEAK FORMULATION

Figure 3 shows the scheme of a continuous rotor bearing system.
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Figura 3 – Rotor system considered

The right diagram in Figure 3 illustrates the clearance considered between bearing and housing. Harmful clearance
happens if there is wear of the parts or manufacture/assembly problems. In many machines, due to shaft thermal expan-
sion, one bearing must have freedom to move in the axial direction, so there should be some clearance between bearing
and housing. Bearing is the component that absorbs all the energy from impacts and loads having, as a consequence, its
life reduced.

The two directions are coupled due to gyroscopic forces. One assumes that rotary inertia has very small effect on the
dynamics for the system parameters under consideration.

The Euler-Bernoulli beam model is used (Meirovitch, 1997). Damping is added to the beam’s dynamics: d
∂u
∂ t

, where

d is the damping coefficient. The problem gets more complicated when the gyroscopic moments are considered: ΩIr
∂ 2u
∂x∂ t

.
Now there is coupling between the two directions.

The problem is written in the weak formulation (after the approximation):

äi
∫ L

0 mφiφ jdx+ äiMrφi(L)φ j(L)+ai
∫ L

0 EIφ ′′i φ ′′j dx+ ḃiΩIrφ
′
i (L)φ ′j(L)+

+ȧi
∫ L

0 d1φiφ jdx = P1(t)φ j(xB3)+P1(t)φ j(xB4)+Q1(t)φ j(L)

b̈i
∫ L

0 mφiφ jdx+ b̈iMrφi(L)φ j(L)+bi
∫ L

0 EIφ ′′i φ ′′j dx− ȧiΩIrφ
′
i (L)φ ′j(L)+

+ḃi
∫ L

0 d2φiφ jdx = P2(t)φ j(xB3)+P2(t)φ j(xB4)+Q2(t)φ j(L)

ai(0) = 0 , ȧi(0) = 0 ; bi(0) = 0 ḃi(0) = 0

(3)

In the weak formulation the boundary conditions are incorporated in the equation. At x = 0 the shaft is clamped
(essential condition) and in x = L there is a mass attached (natural condition). The parameters are:

u1 → displacement at e1 direction u2 → displacement at e2 direction φ → vibration modes
E → elasticity module I → shaft inertia momentum m → density times area section (ρA)
Mr → rotor mass Ir → rotor inertia momentum L → shaft length
Ω → rotation speed d1 and d2 → damping coefficients xB3 and xB4 → bearing positions

And:

u1(x, t) =
N

∑
i=1

ai(t)φi(x) ; u2(x, t) =
N

∑
i=1

bi(t)φi(x) (4)

N is the number elements of the base used in the approximation. φ is called trial function. The system is projected in the
basis composed by the trial functions.

The external forces acting on the system are: 1. centrifugal forces due to unbalance; 2. force of the rotor weight due
to gravity; and 3. forces due to impact. The non–linearity of the system comes from the forces due to impact. Unbalance
forces (UΩ2cos(Ωt)), rotor weight (Mrg) and impact forces (P1,2) are written as:

Q1 = UΩ
2cos(Ωt) Q2 = UΩ

2sen(Ωt)−Mrg

P1 =−ξ

(
kh

(r− c)u1

r
+dh

(u̇1u1 + u̇2u2)u1

r2

)
P2 =−ξ

(
kh

(r− c)u2

r
+dh

(u̇1u1 + u̇2u2)u2

r2

) (5)
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Where:

r =
√

u2
1 +u2

2 kh and dh = housing stiffness and damping, respectively U = unbalance

c = clearance ξ = 1 if r ≥ c , and ξ = 0 if r < c g = acceleration of gravity

APPROXIMATION

To find an approximation, the system is discretized by the Galerkin method. In this method the error of the approxi-
mation is orthogonal to the projection space. When a finite number of terms are used to approximate the solution for u1
and u2 The weak formulation is transformed into a system of ordinary differential equations that can be written as:

[M]Ẍ+[C +G]Ẋ+[K]X = F (6)

Where [M] is a symmetric positive definite matrix; [K] is a symmetric positive semi-definite matrix; [C] is a symmetric
positive semi-definite matrix; [G] is an skew-symmetric matrix; X is the displacement vector; and F is the force vector.

With the system of ordinary differential equation in hands one can calculate an approximation using numerical com-
putation and analyze the convergence. For the approximation scheme, the permissible error is defined and then an appro-
ximation is computed with N elements of the basis. The relative error is calculated (with respect to the approximation
computed with N/2 elements of the basis, for instance). If it is bigger than the permissible error, the number of elements
of the basis is increased and another approximation is computed. If the error is smaller than the permissible error than
one gets an approximation. The error considered in the calculations is the mean square error computed considering the
displacements and their first and second derivatives.

Finite Element Method - FEM

In FEM the trial functions (interpolation functions) of each element are described in local coordinates. The global
matrices are calculated by assembling the element matrices.

The natural frequencies and normal vibration modes of the system can be calculated after the computation of the global
matrices [M] and [K]. The following eigenvalue problem must be solved:

(−ω
2
i [M]+ [K])φi = 0 (7)

Where ωi is the i–th natural frequency and φi is the i–th vibration mode.

The FEM is an effective method and it is largely used. But, depending on the problem, it might result in huge matrices.
Besides, performing a non–linear problem can be very demanding computationally.

Using the Normal Modes

In this method the trial functions, φi, are the vibration modes of the associated conservative system.

In many cases, the modes of the system are not known a priori. So they must be computed with another approximation,
FEM for example.

By using the Normal Modes, one gets a good representation a linear problem because it generates matrix not so big.
But the method is not very effective when one deals with non-linear dynamics.

Karhunen–Loève Decomposition

In Karhunen–Loève Decomposition (KLD), the trial functions are the KL basis obtained from the correlation matrix
[R], which is symmetric. It generates the eigenvalues and the orthogonal eigenvectors which are the proper orthogonal
modes (POM), also called empirical modes. The proper orthogonal values (POV) are the eigenvalues of matrix [R]. Matrix
[V ] is formed as follows:

The dynamic response computed through different simulations are gather in matrix [U ], Eq. (8):

[U ] = [up1 up2 ... upn] =


up1(t1) up2(t1) ... upn(t1)

. . . .

. . . .

. . . .
up1(tm) up2(tm) ... upn(tm)

 (8)
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up1 means displacement at position 1. Matrix [U ] has dimensions m×dn: m time instants at n spatial points. Because
of the two directions, u1 and u2, d = 2. Using the hypothesis of stationarity and ergodicity, the variation of the field with
respect to the mean value is:

[V ] = [U ]− 1
m



m

∑
i=1

up1(ti)
m

∑
i=1

up2(ti) ...
m

∑
i=1

upn(ti)

. . . .

. . . .

. . . .
m

∑
i=1

up1(ti)
m

∑
i=1

up2(ti) ...
m

∑
i=1

upn(ti)


(9)

Then matrix [R] can be computed, Eq. (10):

[R] =
1
m

[V ]T [V ] (10)

Matrix [R] has dimensions dn×dn.

The KLD is the method that generates the best basis to represent a dynamic problem. It is the best in the sense that it
is necessary less elements to represent a dynamics.

NUMERICAL SIMULATION

The computer used to perform the simulations was a desktop: 3,2 GHz processor speed and 2 GB RAM.

The dimensions and the material properties used in the simulation are the same as the blower, Figure 1, except for
system damping and bearing stiffness. The system damping was chosen big on purpose, it is due, unfortunately, to the
lack of computer processing availability. The parameters values used for the standard simulation are:

Shaft length, L = 3053 mm Shaft diameter, Ds = 110 mm Rotor mass, Mr = 100 kg
Elasticity modulus, E = 193 GPa Density, ρ = 8000 kg/m3 Damping, d1 = d2 = 1000 Ns/m2

Balance quality grade, G = 6 mm/s Clearance, c = 69 µm Bearing stiffness, kh = 0,1 GN/m
Bearing 3 position, xB3 = 1,692 m Bearing 4 position, xB4 = 2,302 m Bearing width, Bw = 58 mm
Rotation speed, Ω = 124 rd/s = 1185 RPM

Finite Element

The program Flexpde was used to compute the response by Finite Element Methods. For a precision specified of
< 0,5% in the 40th vibration mode it was necessary 320 elements (these modes will be used to project the dynamics).
The dynamic response was also calculated by FEM. Figure 4 shows the convergence analysis:

Figura 4 – Convergence of the approximation, Left: varying dt; Right: varying NE

For a precision of < 0,5% it is necessary to use ∆t = 0,0005s and 40 finite elements. One point that should be
remarked is that 40 finite elements means 120 interpolation functions.

Using the Normal Modes

The normal modes computed by FEM of a clamped beam with a mass on its extremity are used to reduce the system,
so an approximation of the dynamics can be calculated. In order to select the proper time steps and the number of normal
modes used to generate the dynamic response.
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Figura 5 – Convergence of the approximation, Left: varying dt; Right: varying N

In this work the subroutine used to solve the system of ODEs was ode45 from MATLAB. It is based on Runge-Kuta
method of 4th and 5th order.

Figure 5 shows the percent error in the dynamic response for different number of modes and for different time steps.
The error decreases increasing the number of modes and decreasing dt, respectively. For a precision specified of < 1,5%
it is necessary ∆t = 0,001 and N = 10.

Since there are two directions, u1 and u2, it is necessary 2×10 = 20 modes to represent the problem. The time spent
to compute the dynamic response depends on the number of modes used in the approximation. For N = 10, the average
time spent in a simulation is 20 minutes.

Karhunen–Loève - KL

The KL basis can be used to reduce even more the system. To construct the correlation matrix [R], 10 simulations
were computed, varying G uniformly from 1 to 10 (1, 2, .., 10). This range of G was chosen because this is a reasonable
unbalance for this kind of machine to operate, where G = 10 is a big unbalance. So, the KL basis is valid only for an
specific range: 1 <G< 10. To compute the eigenvalues of matrix [R] the time spent was about 45 minutes.

With the empirical modes in hands one can reconstruct the dynamics.

Figura 6 – Convergence of approximation for KLD

Figure 6 shows the convergence comparing the dynamic response reconstructed by KL basis and the dynamic response
computed by FEM. For a precision specified of < 3%, the number of empirical modes needed is 8, which means 16
elements of the basis.

Figure 7 compares the convergence of the approximation using the Normal Modes and using KL basis with the
response computed by FEM as a reference.
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Figura 7 – Convergence Normal Modes x KLD

It is clear that KL basis can approximate better the dynamic response. Even though this is true, the computation time
required to integrate the system of ODEs when one uses KL basis is greater then when one uses the normal modes. That
is why Figure 7 only shows the approximation for the first two modes. Using two modes, the percent error is still high –
17,7% using two normal modes and 12,4% using two POMs – comparing with the response computed by FEM. Figure 8
shows the shape of the first two normal modes and the first two POMs.

Figura 8 – First two modes

To represent the problem:

• FEM −→ 120 elements of the basis (40 finite elements);

• Normal Modes −→ 20 elements of the basis (normal modes);

• KLD −→ 16 elements of the basis (empirical modes).

KLD is the best method to represent this non–linear problem in the sense that one needs less elements of the basis.

OTHER SIMULATIONS

The dynamic response of the shaft was computed so the problem can be studied. Figure 9 shows the shape of the shaft
when the machine is in operation. Observe that the load zone of bearing number four is at the bottom part of the housing
while the load zone of bearing number three is at the top.

Figure 10 shows the dynamic response, u1 and u2 at bearing number three, and the orbit of u2 at bearing number three,
all computed by FEM. The results were analyzed after the system stabilization.

Figure 11 shows two FFT curves for G = 0,5 and G = 6 [mm/s]. One can observe multiples of fundamental frequency
(2X, 3X,...) on the spectrum for high levels of unbalance. If the unbalance is small, G = 0,5 for example, one can barely
see the harmonics. If the unbalance is big, G = 6 for example, the harmonics are evident.
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Figura 9 – Shape of the shaft under operation condition

Figura 10 – Left: dynamic response at bearing number 3 - u1(blue) and u2(green); Right: orbit at bearing number 3
after the transient

Figura 11 – FFT of the displacement of bearing number 3: G = 0,5 (blue) and G = 6 (magenta)

This result shows good qualitative agreement with the experimental result, Figure 2.

Due to lack of space, other results, as the forces acting on the bearings when other parameters vary, are not presented
in this paper.

CONCLUDING REMARKS

A rotor-bearing system model was proposed in this work. Numerical results showed good qualitative agreement with
real rotating machine behavior. The model can thus help the understanding of the behavior of a rotor system.

Concerning the bases chosen to represent this non-linear problem, Karhunen–Loève Decomposition (KLD) generated
the most reduced model. To compute the vibration modes by the Finite Element Method (FEM) one needs at least 120
elements of the basis (40 finite elements) to achieve a prescriptive precision. By using the Assumed Modes to calculate
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the dynamic response one needs at least 20 elements of the basis (normal modes). By using KLD one needs at least 16
elements of the basis (empirical modes).

Since the problem is strongly non-linear, it seems that to get a better description of the dynamics one should search
for a smart base that takes into account the non-linearities (the normal modes do not). KLD aims to describe the observed
phenomenon in a reduced dimension and it is capable to capture the most interesting features of the dynamics.

A rotor-bearing system is very complex. Several other aspects of the rotor system should be taken into account in
future works, such as: a better description of the damping, the influence of lubricant and the control of the dynamics.
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