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Abstract: A pair of almost identical tall buildings erected very closely is modeled as two inverted pendulums. The 
small amount of coupling between them provided by the soil on which they are founded is modeled as a nonlinear 
hardening type of spring, according to our professional judgment. We derive the equations of free vibrations motion of 
this two-degree-of-freedom nonlinear mathematical model and seek the conditions for the existence of similar 
nonlinear modes at one-to-one resonance, namely the (almost) symmetrical and (almost) anti-symmetrical ones. 
Further, a parametric study is carried out to find a certain relationship of the stiffness characteristics of the system 
leading to a mathematical bifurcation of the anti-symmetrical mode. We find that, in these conditions, we can get the 
amplitude of free vibrations of one of the two generalized coordinates as large as we desire, compared to the 
amplitude of vibration of the other one. This phenomenon is a sort of mode localization quite different from the usual 
localization of linear modes of quasi-periodic systems. We propose that this study may be of interest in Seismic prone 
regions such as the Latin American Countries of the Pacific Coast and Portugal. 
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NOMENCLATURE 
K= stiffness ratio, dimensionless 
a = stiffness coefficients 
c = constant relations between 

coordinates 
n = number of degrees of freedom 
x = generalized coordinates 
 

Greek Symbols 
Δ  = determinant 
Δt = time step 
δ = elongation of coupling spring. 

Subscripts 

i relative to a generalized 
coordinate 

r relative to a generalized 
coordinate 

x relative to difference between 
generalized coordinates 

 

INTRODUCTION 
A considerable effort has recently been made by researchers in mechanics to extend to the non-linear case the usual 

superposition of normal modes technic for dynamic analysis of linear systems. As a natural analogy, Rosenberg (1966) 
defined a non-linear normal mode of a discrete system as a particular free vibration in which all co-ordinates oscillate in 
unison. In other words: the motions of all co-ordinates are periodic, of the same period; all co-ordinates reach their 
extreme values at the same instant of time; and at any instant of time the co-ordinates can be expressed as functions of 
only one of the others, making it possible to parametrize the oscillations by any of them. This last condition allows for 
an additional classification of the non-linear normal modes; namely, if the functional relationship is linear the mode is 
said to be similar, corresponding to straight line trajectories in the configuration space. Otherwise, the mode is called 
non-similar. Similar modes are detected by imposing matching conditions for the coefficients of respective non-linear 
terms of the differential equations of motion. A very interesting characteristic of some non-linear systems is the 
possibility of the number of normal modes to exceed that of the number of degrees of freedom, due to mathematical 
bifurcations, in contrast to linear systems in which the number of modes must be equal to that of their co-ordinates. 

Analytical methods have been proposed to detect non-linear normal modes and applied to certain classes of 
problems by, among others, Rand (1974), Chi and Rosenberg (1985), Caughey et al. (1990), Caughey and Vakakis 
(1991), Rand et al. (1992), Vakakis (1991) and Vakakis and Rand (1992). Recently, invariant manifolds concepts were 
used by Shaw and Pierre (1991, 1993, 1994) to develop a method of obtaining expansions for the non-linear normal 
modes, with extensive use of symbolic computation. Variations of the algorithm were proposed by Balthazar et al. 
(1994) for certain systems. A complex normal mode manifold approach to attack cases of internal resonance has also 
been proposed by Nayfeh and Nayfeh (1994). 

In this paper we present some results of our research to determine the non-linear similar normal modes of a two-
degree-of-freedom model as inverted pendulums of a pair of almost identical tall buildings. We consider the restoring 
forces of the model, i.e. those given by the foundations, to be composed of a linear part plus non-linearities of quadratic 
nature, of both the hardening and the softening kinds. The differential equations of motion are written in a general form 
to allow the conclusions to be extended to non-structural problems of the same mathematical formulation. We 
determine in which conditions it is possible for this model to have similar modes and bifurcations. Direct numerical 
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time integration of the equations, without any previous manipulation, using a Runge—Kutta algorithm, is presented to 
verify the analytical predictions. 

We find that, if the bifurcation occurs, we can get the amplitude of free vibrations of one of the two generalized 
coordinates as large as we desire, compared to the amplitude of vibration of the other one. This phenomenon is a sort of 
mode localization, quite different from the usual localization of linear modes of quasi-periodic systems. These are 
structures composed of a series of nearly equal substructures lightly coupled. In such structures, the frequencies are 
clustered in groups of very close values and the presence of small perturbations in the dynamic characteristics of the 
substructures make the modes, that are otherwise extended to the whole structure, to get localized, that is, some regions 
of the structure experience large amplitude vibrations while others remain almost motionless. References on this 
phenomenon are the works of Brasil and Hawwa (1995), Hawwa and Brasil (1996), Brasil and Mazzilli (1995) and 
Brasil, Menoita and Balthazar (2000). 

Possible practical applications of the material presented in this paper are in support excitation of Civil Engineering 
structures in seismic prone regions such as the Pacific Coast Latin American Countries and Portugal, both within the 
influence zone of Brazilian engineering presence. 

THE MATHEMATICAL MODEL 
As an application, the mathematical model in Figure 1 is analyzed, with wo almost equal cantilever tall buildings of 

height h and constant cross-section, m is a part of their masses lumped at their tops. The adopted mathematical model of 
the structure, shown in Figure 1, consists of two vertical rigid massless bars pinned in their bases where rotational non-
linear springs act, coupled by a horizontal flexible massless beam that acts as a non-linear spring. The generalized and 
normalized co-ordinate x1 is related to the horizontal displacement of the top of the left column, and x2 to the horizontal 
displacement of the top of the right column. Here we are neglecting damping, which we consider in Balthazar and 
Brasil (1995). 

We consider the generalized and normalized restoring force due to each of the rotational springs to have the form - 

,2,1,)( 201 =−= ixxaaf iiii          (1) 

corresponding to a softening type spring to model the nonlinear soil-structure interaction behavior at the foundation of 
each building, according to our professional experience. 

The generalized and normalized restoring force of the coupling flexible massless beam is considered to have the 
form 

2
3112 xx aaf δδ +=           (2) 

where xδ  is the differential displacement of the coupling beam, corresponding to a hardening type of spring, to model 
the nonlinear interaction between close buildings foundations, according to our professional experience. 

The Lagrange differential equations of motion of this model, in a general normalized form, are 

,0)( 2
3

2
1212111011 =+−−++ xaxaxaxaax δ&&        (3) 

.0)( 2
3

2
2221121022 =+−−++ xaxaxaxaax δ&&         (4) 

 

 

Figure 1 – The 2-DOF mathematical model 
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SIMILAR NON-LINEAR NORMAL MODES 
To detect the existence of similar non-linear modes in a system, with n degrees of freedom, the usual procedure is to 

require, for all times, a linear relationship between the generalized co-ordinates in the form 

 ,1,,,...,1, =≠== rrriri crinixcx        (5) 

where cir are (n — 1) unknown scalar quantities. Substituting the conditions (5) into the equations of motion we obtain 
n differential equations in xr . It is evident that they will give the same solution for xr if and only if all the coefficients of 
the respective powers of this variable are equal. 

In our case we have n = 2, so that condition (5) becomes 2121 xcx = . It is clear that if 0201 aa ≠  similar modes are not 
possible and we would have non-similar normal modes, which we study in Balthazar and Brasil (1995). If we take these 
two coefficients to be equal, corresponding to the so-called one-to-one resonance, and balancing the coefficients of the 
equations, we find that 112 +=c and 112 −=c are always solutions, corresponding to the symmetric and antisymmetric 
normal modes, respectively. In what follows, we also make 2221 aa = . 

Additional non-linear similar modes are found for certain values of the stiffness ratio 

ia
a

K
2

3=             (6) 

For positive values of the determinant quantity 

2

14
KK

+−=Δ           (7) 

corresponding to 
4
1

<K , a mathematical bifurcation is found and for each value of this ratio two additional values of 

12c , in addition to + 1, are possible: 

2/)12(12
Δ±

+=
K

c .          (8) 

A plot of these conclusions is presented in Figure 2. One finds that the bifurcation springs from the antisymmetric 
mode, which physically corresponds to the two buildings vibrating in such a way as to be always either approaching or 
moving away from each other. 

 

 

Figure 2 – Values of C12 as function of K = a3/a2i 

NUMERICAL INTEGRATION 
In this section, a Runge—Kutta algorithm is used directly to integrate equations (3) and (4), without any previous 

manipulation. Structural parameters and initial conditions are chosen in such a way as to have the structure oscillating in 
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a non-linear similar normal mode given by a coefficient 12c  in one of the branches of the bifurcation shown in Figure 2. 

The numerical values of the coefficients of the equations used are 5.0,1 222110201 ===== aaaaa , and 1.03 =a , so 
that 2.0=K . These values were suggested by a parametric study, in order to force occurrence of certain nonlinear 
phenomena, and are not to be considered as corresponding to any real buildings. The adopted initial conditions, using 
equation (8), are ,0)0(,5236.0)0(,0)0(,1.0)0( 2211 =−=== xxxx &&  and the integration time step is .05.0 st =Δ  

Time history graphics of the two co-ordinates are superposed in Figure 3, using a solid line for 1x and a dashed line 

for 2x . It is very clear that the motions of the co-ordinates are periodic of the same period and that they reach their 
maxima simultaneously, according to the usual definition of non-linear normal modes. 

Plots of the velocities against the displacements for each co-ordinate are superposed in Figure 4, using the same 
solid and dashed line convention. 

 

 

Figure 3 – Time histories of x1 (_____) and x2 (- - - - - )) 

 

MAIN CONCLUSIONS 
Non-linear similar normal modes of a two-degree-of-freedom model of a two buildings structure were studied. The 

restoring forces of the model were considered to be composed of a linear part plus non-linearities of quadratic nature of 
both the hardening and the softening kinds. The conditions for the model to have similar modes and bifurcations were 
analytically determined. It was also presented mode localization in the nonlinear mode context. Direct numerical time 
integration of the equations, without any previous manipulation, using a Runge—Kutta algorithm, results in time 
histories according to the usual non-linear normal modes definition.  

We are presently working on large nonlinear Finite Elements numerical models of the problem, to be presented in 
further papers, in order to: a) consider the flexibility of the free standing buildings; b) more realistic  modeling of the 
soil-structure interaction at the foundations of each building and the interaction between the buildings. 

Possible practical applications of the material presented in this paper is suggested in seismic excitation of Civil 
Engineering structures. We agree that earthquakes are not frequent nor serious in Brazil, although a new National Code 
on the subject has recently being proposed by ABNT (2006). But our Civil Engineering has the opportunity to work in 
all of the Pacific Coast Latin American countries and in Portugal. 
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Figure 4 – Phase planes for of x1 (_____) and x2 (- - - - - )) 
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