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Abstract: The most common type of conductors of high voltage transmission lines is composed of steel core wires and
one to three layers of aluminum wires wound around, commonly referred to as ACSR conductors (Aluminum Conductor
Steel Reinforced). Due to the complex geometry of a typical ACSR conductor under bending, the majority of the theo-
retical models available in the literature considers such a mechanical structure as a continuous system. In the simplest
models the conductors are treated as taut strings without bending stiffness, while in the more sophisticated ones they
are treated as homogeneous elastic beams with constant bending stiffness, and subjected to a constant axial load. Al-
though the elastic beam model seems to be the most appropriate to describe the mechanical vibrations of transmission
line conductors, such as the vibrations induced by the wind and commonly referred to as aeolian vibrations, there is a
great uncertainty concerning the bending stiffness and the damping parameters of typical transmission line conductors.
The present work is aimed at modelling transmission line conductors as homogeneous beams with viscous damping and
estimating its bending stiffness and damping parameters. The mathematical formulation of the physical problem is de-
veloped under the framework of an Euler-Bernoulli beam subjected to small displacements. The direct problem is solved
analytically and numerically by the generalized integral transform technique and the finite-element method, respectively.
A suitable frequency-domain error function is defined as the sum of squares of the differences between measured and
estimated frequency response functions. The inverse problem is aimed at minimizing this error function by means of
the classical Levenberg-Marquardt parameter estimation technique. Several simulation examples have been performed
in order to assess the effectiveness of the estimation procedures. Aiming at obtaining conditions closer to reality, the
simulations are performed considering noise-corrupted measurements and a reduced number of available sensors over
the structure.
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INTRODUCTION

Wind-excited mechanical vibrations (or aeolian vibrations) in single overhead transmission line conductors are under-
stood as a critical problem for the safety and reliability of the transmission line. Different types of mechanical vibrations
may occur; however, the most common type corresponds to wind-excited vibrations in the frequency range of 3 Hz to
150 Hz, caused by vortex-shedding (Rawlins, 1979; Hagedorn, 1982; Meynen et al., 2005). In the current work, the well-
known galloping vibrations (CIGRÉ, 1989) of very low frequency (below 1 Hz) will not be considered. The aerodynamic
lift force arising from the periodic shedding of vortices in the wake of the conductor is responsible for its subsequent vi-
brations in a direction normal to the wind flow. Depending on the pattern of the wind flow and on the mechanical damping
of the transmission line, the dynamic stresses and strains induced on the constituent wires of the conductors may become
dangerously high, especially at the suspension clamps and at the attachment points of Stockbridge dampers (Wagner et
al., 1973; Hagedorn, 1982; Hagedorn et al., 1987). These stresses and strains may lead to fatigue damage on the wires
with catastrophic consequences such as the complete rupture of the conductor and interruption on the supply of electric
energy. Therefore, the understanding of the transmission lines dynamics is a relevant issue.

Aeolian vibrations on transmission line conductors are expected for wind speeds in the range of 1 m/s to 10 m/s. Based
on typical values for conductor diameters (15 mm to 30 mm) and on the values of the dynamic viscosity and specific mass
of the standard air, a simple calculation would reveal that such vibrations arise in wind flows with Reynolds number in the
range of 103 to 104. For subsonic flows in this range of Reynolds number, also called sub-critical range, it is well-known
that the shedding of vortices across stationary bluff bodies has a well-defined frequency, commonly referred to as the
shedding frequency (Blevins, 1990). Experimental observations with stationary and smooth circular cylinders indicate
that the shedding frequency, fs, is directly proportional to the flow velocity normal to the cylinder, U , and inversely
proportional to the cylinder diameter, D; the proportionality constant being the Strouhal number, St. It is also well-known
that the Strouhal number is a function of both the geometry and Reynolds number for low Mach number flows (Blevins,
1990); for example, for smooth circular cylinders St � 0 � 2 such that the stationary shedding frequency may be computed
as fs � 0 � 2U

�
D. Experimental measurements in the field have revealed that the Strouhal number for transmission line

conductors are lies in the range 0.185 to 0.22 (Kraus and Hagedorn, 1991; Rao, 1995). The complicated phenomenon of
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vortex-shedding across stationary bluff bodies is not yet completely understood and requires intense research efforts.

In the context of aeolian vibrations on overhead conductors, other complicating factors come into picture: (i) the
dynamic interaction between the wind flow and the structural vibrations of the conductor; (ii) the irregular and apparently
chaotic behavior of the wind flow; and (iii) the flexibility and surface roughness of transmission line conductors. Thereby,
the subject of aeolian vibrations on transmission line conductors remains up to now unsatisfactorily explained, mainly
because little progress has been made on the mathematical modelling of wind excitations and on the energy dissipated by
stranded cables (as transmission line conductors) under flexural vibrations, which, in part, can be attributed to little data
about the mechanical properties of transmission line conductors, such as the bending stiffness and damping parameters.

The most common type of conductors of high voltage transmission lines is composed of steel core wires and one to
three layers of aluminum wires wound around, commonly referred to as ACSR conductors (Aluminum Conductor Steel
Reinforced), as can be seen in Fig. 1. Under operational conditions, these conductors are subjected to a specified tensile
mechanical load and their ends are clamped at the suspension towers. Due to the complex geometry of a typical ACSR

Figure 1 – ACSR transmission line conductor with three layers of aluminum wires.

conductor under bending, the majority of the theoretical models available in the literature considers such a mechanical
structure as a continuous system (Claren and Diana, 1969; Dhotarad et al., 1978; Hagedorn, 1982; Hagedorn et al., 1987;
Vecchiarelli et al., 2000; Diana et al., 2000; Matt and Castello, 2005). In the simplest models the conductors are treated as
taut strings without bending stiffness, while in the more sophisticated ones they are treated as homogeneous elastic beams
with constant bending stiffness, and subjected to a constant axial load. Although the elastic beam model seems to be more
appropriate to describe the mechanical vibrations of transmission line conductors, there is a great uncertainty concerning
the bending stiffness and the damping parameters of typical transmission line conductors.

The main mechanisms of damping on a transmission line conductor are now quite clear. Mechanical energy is dis-
sipated due to the inter-strand friction among the constituent wires of the conductor (structural damping) and due to the
aerodynamic losses during flexural vibrations (aerodynamic damping). In the literature, aerodynamic and structural damp-
ing are assumed to be, respectively, of viscous and hysteretic type; but few works have attempted to take these forms of
damping into account. Energy is also dissipated due to material damping and at the conductor clamps. The measurement
of the latter on a laboratory span seems to be a not very easy task.

As for the bending stiffness, Papailiou (1997) presented a more sophisticated model that takes into account the heli-
coidal geometry of the wires, the interlayer friction and the interlayer slip during bending. The model proposed by Papail-
iou (1997) leads to a variable bending stiffness, i.e., a stiffness which changes with the bending amplitude and the tension
applied to the conductor. Matt and Castello (2005) also considered the transmission line conductor as a heterogeneous
beam with a variable bending stiffness and estimated such a distributed property by the classical Levenberg-Marquardt
iterative procedure. Nevertheless, most authors adopt a constant bending stiffness for the conductors. The constant value
of the bending stiffness is frequently chosen to be within a certain range. The minimum value is obtained by considering
the conductor as a bundle of individual wires and by assuming that all wires are free from each other to move; thus the
minimum value is given by the sum of the bending stiffness of all wires (CIGRÉ, 1989). On the other hand, the maximum
value is obtained by also considering the conductor as a bundle of individual wires and assuming that contact pressure
among the wires is high enough to prevent their relative motions (CIGRÉ, 1989). The uncertainty about the bending
stiffness of typical conductors is due to the fact that the maximum and minimum bending stiffness values may differ by
several orders of magnitude.

The current work presents a model of transmission line conductors as homogeneous beams, taking into account aero-
dynamic and structural damping and estimating its bending stiffness and damping parameters. The mathematical formu-
lation of the physical problem is developed under the framework of an Euler-Bernoulli beam subjected to small displace-
ments. The direct problem is solved analytically and numerically by the generalized integral transform technique and the
finite-element method, respectively. A suitable frequency-domain error function is defined as the sum of squares of the
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differences between measured and estimated frequency response functions. The inverse problem is aimed at minimizing
such an error function by means of the classical Levenberg-Marquardt parameter estimation technique.

This paper is organized as follows. In section 3, there is a description of the mathematical formulation of the physical
problem under the framework of classical Euler-Bernoulli beam subjected to axial tensile load and small displacements, a
formulation the direct problem, and a discussion of its analytical and numerical solutions. Then, the classical Levenberg-
Marquardt iterative procedure is presented. In section 4, the estimates obtained for the bending stiffness and damping
parameters are presented and analyzed. Finally, in section 5, the main conclusions and comments about future works are
stated.

MATHEMATICAL FORMULATION OF THE PHYSICAL PROBLEM

In the the present work the transmission line conductor is modelled as an Euler-Bernoulli beam with constant bending
stiffness EI and subjected to a constant tensile load T . Figure 2 shows a differential element of a transmission line
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Figure 2 – Differential element of the transmission line conductor.

conductor. Based on Figure 2, one can write the balance of forces along the vertical direction as

H � x � t � ∆x � �
T � ∂T

∂x
∆x � � ∂w

∂x
� ∂ 2w

∂x
∆x ��� �

V � ∂V
∂x

∆x ��� T
∂w
∂x

� V � α
∂w
∂ t

∆x � ρ A∆x
∂ 2w
∂ t2 � (1)

which leads to

H � x � t �	� ∂
∂x 
 T

∂w
∂x � � ∂T

∂x
∂ 2w
∂x2 ∆x � ∂V

∂x
� α

∂w
∂ t � ρA

∂ 2w
∂ t2 � (2)

where H � x � t � stands for the external excitation, ρ denotes the specific mass of the conductor and A its cross-section area.
The product ρ A represents the mass per unit length of the conductor and will henceforth be denoted by the symbol µ .
The fifth term on the left side of Eq. (2) stands for an aerodynamic damping of viscous type. The parameter α appearing
on Eq. (2) is the equivalent viscous damping constant. If one disregards rotational inertia, the bending moment M � x � t � is
related to the shear force V � x � t � as follows

∂M
∂x

� V � 0 � (3)

which leads to

H � x � t �	� ∂
∂x 
 T

∂w
∂x � � ∂T

∂x
∂ 2w
∂x2 ∆x � ∂ 2M

∂x2 � α
∂w
∂ t � µ

∂ 2w
∂ t2 � (4)

Taking the limit as ∆x goes to zero, one arrives at

H � x � t �	� ∂
∂x 
 T

∂w
∂x � � ∂ 2M

∂x2 � α
∂w
∂ t � µ

∂ 2w
∂ t2 � (5)

In order to obtain the final form of the equation of motion, it is necessary to express the bending moment M � x � t � as a
function of the displacement field w � x � t � , what can be done after choosing a suitable constitutive equation for the medium.
As a first approach, one may consider the following constitutive equation

σ � Eε � ξ
∂ε
∂ t

� (6)
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where E and ξ are, respectively, the Young modulus and the material damping factor. In this initial approach, one should
assume that the second term on the right side of Eq. (6) takes into account all the losses but the aerodynamic one. It should
be highlighted that although this damping model is quite simple, Barbieri et al. (2004) used a similar model to characterize
the dynamic behavior of a transmission line conductor and their simulated results got closer to the experimental ones.

Using Eq. (6), the bending moment M � x � t � may be written as follows

M � x � t � ���
A
� yσ � x � t � dA ���

A
� y

�
Eε � ξ

∂ε
∂ t
� dA (7)

where the strain field, for small displacements of the conductor, may cast as follows

ε � x � y � t � �
T

EA
� y

∂ 2w
∂x2 � (8)

The bending moment M � x � t � is finally given as follows

M � x � t � � EI
∂ 2w
∂x2 � ξ I

∂ 3w
∂x2∂ t

(9)

and the following relations have been used

�
A

y dA � 0 and I � �
A

y2 dA � (10)

Substituting Eq. (9) into Eq. (5) one arrives at the following equation

H � x � t �	� ∂
∂x 
 T

∂w
∂x � � ∂ 2

∂x2

�
EI

∂ 2w
∂x2 � � ∂ 2

∂x2

�
ξ I

∂ 3w
∂x2∂ t

��� α
∂w
∂ t � µ

∂ 2w
∂ t2 � (11)

Considering the tensile load T , the bending stiffness EI and the internal dissipation ξ I as constants, the final form of the
equation of motion may be written in the following form

EI
∂ 4w
∂x4 � T

∂ 2w
∂x2 � ξ I

∂
∂ t � ∂ 4w

∂x4 � � α
∂w
∂ t

� µ
∂ 2w
∂ t2 � H � x � t � � (12)

Direct Problem

The direct problem consists in finding the solution of Eq. (12), satisfying the appropriate boundary and initial condi-
tions, with the conductor parameters EI, ξ I and α , and the excitation H � x � t � known a priori. Several analytical techniques
and numerical methods may be used to solve the direct problem. Here, the direct problem is solved through the finite-
element method (Hughes, 2000; Reddy, 1993) and the generalized integral transform technique (Özişik, 1993; Cotta,
1993).

Numerical solution by the finite-element method

The numerical solution of Eq. (12) will be obtained by means of the Finite Element Method. Multiplying the equation
of motion by a test function u and integrating it over a sub-domain of the system leads to

� xe � 1
xe � � T

∂w
∂x

∂u
∂x

� EI
∂ 2w
∂x2

∂ 2u
∂x2 � ξ I

∂ 3w
∂x2∂ t

∂ 2u
∂x2 � α

∂w
∂ t

u � µ
∂ 2w
∂ t2 u � H u � dx � 0 (13)

Considering that the displacement field can be approximated by w � x � t � � N � x � wh � t � one obtains

� xe � 1
xe 
 � T

∂N
∂x

T ∂N
∂x

wh � uh � EI
∂ 2N
∂x2

T ∂ 2N
∂x2 wh � uh � (14)

� � � 1 � ξ I
∂ 2N
∂x2

T ∂ 2N
∂x2 ẇh � uh � αNT Nẇh � uh � µNT Nẅh � uh � H NT uh � dx � Γ � 0

where N is a matrix containing the shape functions and Γ contains the boundary conditions. In matrix form, the evolution
equation casts as

Meẅh � Deẇh � Kewh � fe (15)
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where

Me
� � xe � 1

xe

µ NT N dx (16)

Ke
��� xe � 1

xe 
 EI
∂ 2N
∂x2

T ∂ 2N
∂x2 � T

∂N
∂x

T ∂N
∂x � dx (17)

De
��� xe � 1

xe 
 ξ I
∂ 2N
∂x2

T ∂ 2N
∂x2 � αNT N � dx (18)

The elemental damping matrix can be rewritten as a function of the elemental mass and stiffness matrices as follows:

De
�

α
µ

Me � � xe � 1
xe

ξ I
∂ 2N
∂x2

T ∂ 2N
∂x2 dx �

α
µ

Me � ξ
E

Ke � ξ T
E � xe � 1

xe

∂N
∂x

T ∂N
∂x

dx � (19)

Analytical solution by the generalized integral transform technique

The first task in applying the generalized integral transform technique to solve Eq. (12) is to define the inverse-
transform pair. Based on the solution of the equation of motion for the undamped free vibrations of the conductor (Eq.
(12) with H � x � t � � 0 and α � ξ � 0), the inverse-transform pair is defined as

w̄m � t � � � L

0
Ψm � λm � x � w � x � t � dx � transform � (20)

w � x � t � �
∞

∑
m � 1

Ψm � λm � x �
N � λm � w̄m � t � � inverse � � (21)

where λm and Ψm � λm � x � denote, respectively, an undamped natural frequency and the mode of vibration (eigenvalue and
corresponding eigenfunction), and N � λm � stands for the norm of the eigenfunction Ψm � λm � x � . The eigenvalues λm and
corresponding eigenfunctions Ψm � λm � x � , m � 1 � 2 � � � � � ∞, depend upon the boundary conditions. In what follows, one
may assume a concentrated harmonic excitation of the kind H � x � t � � H0 eiΩt δ � x � xs � , where H0, Ω and xs

��� 0 � L � are,
respectively, the amplitude, circular frequency and position of the excitation.

Multiplying Eq. (12) by Ψm � λm � x � , integrating in x from 0 to L, using the definition of w̄m � t � , evaluating the resulting
integrals by parts and using the appropriate boundary conditions for w � x � t � and Ψm � λm � x � , one derives the following
system of coupled second-order ordinary differential equations for the transformed displacements w̄m � t � :

d2 w̄m
dt2 � 2ζ �mλm

d w̄m
dt

� ξ I
EI

T
µ

∞

∑
n � 1

Λmn
d w̄n
dt

� λ 2
m w̄m �

H0

µ
Ψm � λm � xs � eiΩt � (22)

where ζm � α
2µλm

, ζ �m � ζm � 1
2

ξ I
EI λm and the coupling matrix Λmn, m � n � 1 � 2 � � � � � ∞, is defined by

Λmn � 1
N � λn � � L

0
Ψn � λn � x � d2Ψm

dx2 dx � � 1
N � λn � � L

0

dΨn

dx
dΨm

dx
dx � (23)

The last expression appearing on Eq. (23) may be easily derived by performing integration by parts and using the appropri-
ate boundary conditions for Ψm � λm � x � and Ψn � λn � x � . It should be noted that the coupled system of ordinary-differential
equations in Eq. (22) becomes uncoupled if and only if ξ � 0 or T � 0 or Λmn is a diagonal matrix. This coupled system
of ordinary differential equations may be solved numerically after truncating the infinite series into a finite number of
terms, say NT . Once the transformed displacements w̄m � t � , m � 1 � 2 � � � � � NT , are obtained, the original displacement field
w � x � t � is easily recovered with the aid of Eq. (21).

Based on the linearity of the system (22), it is reasonable to assume a steady-state harmonic solution for w̄m � t � of the
kind w̄m � t � � Wm eiΩt . Substituting the harmonic solution for w̄m � t � into Eq. (22), one arrives at the following system of
algebraic equations for the complex amplitudes Wm

NT

∑
n � 1

Kmn Wm � Fm � m � 1 � 2 � � � � � NT � (24)

The components of the coefficient matrix and forcing vector are given by the following expressions:

Kmn ��� λ 2
n � Ω2 	 δmn � i � 2ζ �n λnΩ δmn � ξ I

EI
T
µ

ΩΛmn � and Fm �
H0

µ
Ψm � λm � xs � � (25)

The symbol δmn denotes de Kronecker delta. Defining the complex frequency response function, Ĥ � x � xs � Ω � as the quo-
tient of the amplitude of the acceleration (response) divided by the amplitude of the excitation, H0, one has

Ĥ � x � xs � Ω � � � Ω2
NT

∑
m � 1

Ψm � λm � x �
N � λm � Wm

H0
� (26)
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Inverse Problem

For the inverse problem of parameter estimation considered in this work, the conductor bending stiffness, EI, and
the viscous damping coefficient, α , are regarded as unknown. The additional information used to estimate these two
parameters are the complex frequency response functions measured at prescribed locations x � xp, p � 1 � 2 � � � � � Ns, along
the conductor and at circular frequencies Ωq, q � 1 � 2 � � � � � N f , where Ns is the number of sensors and N f is the number
of frequency data. The boundary value problem given by Eq. (12), with EI and α regarded as unknown, constitutes
an inverse problem in which the parameters EI and α are to be estimated. The solution of this inverse problem for the
estimation of the above two parameters is based on the minimization of the ordinary least squares norm given by (Özişik
and Orlande, 2000)

S � P � �

Ns

∑
p � 1

N f

∑
q � 1
� Ĥmeas �

pq � Ĥest �
pq � P � 	 � � Ĥmeas �

pq � Ĥest �
pq � P � 	 � (27)

where � � � � denotes the complex conjugate; S � P � is the sum of square errors or objective function which is to be minimized;
PT is the two-column vector of unknown parameters (here, P1 � EI and P2 � α); Ĥmeas �

pq and Ĥest �
pq � P � are, respectively,

the measured and estimated complex frequency response functions, both evaluated at locations x � x p, p � 1 � 2 � � � � � Ns

and at frequencies Ωq, q � 1 � 2 � � � � � N f . The minimization of S � P � , given by Eq. (27), is carried out by means of the
classical Levenberg-Marquardt iterative procedure for parameter estimation (Levenberg, 1944; Marquardt, 1963; Beck
and Arnold, 1977; Özişik and Orlande, 2000; Matt and Castello, 2005). The computation of the sensitivity matrix is
required for the estimation process. In fact, for its computation, it is necessary to obtain the derivatives of the estimated
frequency response functions with respect to EI and α . In the present work, finite-difference approaches were used in
order to compute the derivatives of the estimated frequency response functions with respect to the unknown parameters
EI and α (Özişik and Orlande, 2000; Matt and Castello, 2005).

RESULTS AND CONCLUSIONS

Aiming at assessing the effectiveness of the proposed methodology to estimate the bending stiffness and damping
parameters, some simulation results are presented and analyzed in this section. The values chosen in the simulations for
the dimensions and mechanical properties are typical of transmission line conductors tested on the laboratory span of
Electric Power Research Center (CEPEL). Hence, in our simulation results, the axial mechanical load T , the span length
L, the mass per unit length µ , the bending stiffness EI, the viscous damping coefficient α and the internal damping factor
ξ were chosen to be equal to 10700N, 65 � 355m, 0 � 8127kg

�
m, 11 � 07N � m2, 0 � 08127N � s �

m2 and 1 � 1 � 10 � 4 N � s �
m2,

respectively. Three accelerometers have been considered in order to provide the pseudo-experimental frequency response
functions (FRFs). They are located at the positions L

�
4 (AC1), L

�
2 (AC2) and 3L

�
5 (AC3). The driving point for the

FRFs is located at the same position of the accelerometer AC3. Accelerometers AC1 and AC2 are used for the estimation
process.

In order to realistically simulate the corrupting effects of noise, filtering, digital sampling and truncation of the modal
spectrum, a virtual simulator was utilized. The simulator estimates the FRF for each input-output pair through ensemble
averaging. In order to achieve a higher level of fidelity, the input signal is pre-filtered before the analog conversion.
The noise contaminated system response is the available one to be processed, and this signal is filtered at 80% of the
Nyquist frequency before digital sampling. As reported in Alvin (1995), this procedure furnishes realism to the FRF
obtaining problem. The pseudo-experimental FRFs were obtained with a finite-element model of the Euler-Bernoulli
beam containing one hundred elements whose time domain responses were noise-corrupted. The noise level is measured
by the standard signal-to-noise ratio (SNR) which is defined as follows:

SNR � 10log
σ2

s

σ2
n

(28)

where σs and σn denote, respectively, the standard-deviations of the signal and noise. The frequency band used for the
estimations was chosen to be from 0 to 20 Hz. A large number of frequency data points (six hundred and eighty three) was
used in order to have well-defined resonance and anti-resonance regions in the frequency response functions. It should
be emphasized that, in the frequency range adopted, there are approximately twenty-three natural frequencies, closely
spaced.

All the simulations considered simple-supported ends and the following initial guesses for the unknown parameters:
EI

�
0 �

� 10 � 1 N � m2 and α
�
0 �

� 10 � 3 N � s �
m2. As previously presented, the true values of the above mentioned parameters

are EI � 11 � 07N � m2 and α � 0 � 08127N � s �
m2. The first case studied considers the pseudo-experimental frequency

response functions generated with SNR � 90dB (low noise level). Table 1 shows the estimation results obtained through
the models based on the generalized integral transform (GITT) and the finite element method (FEM), as a function of
the number of series terms (NT ) and the number of elements (N), respectively. From Table 1 one can clearly see that the
parameter α is effectively estimated. It should be emphasized that the solution obtained with the GITT model does not
change with the number of series terms (NT ) indicated on Table 1. On the other hand, the solution obtained with the FEM



C. Matt, D. Castello

Table 1 – Estimated bending stiffness and aerodynamic damping coefficient with SNR � 90dB (case 1).

GITT FEM
NT EI α N EI α
100 16.428 0.0817 40 13.626 0.0826
150 16.428 0.0817 60 16.721 0.0822
200 16.428 0.0817 80 17.065 0.0819

model gets closer to the true value as the number of elements (N) increases to eighty. Concerning the bending stiffness
parameter, it is clear that the provided results are overestimated by 50%, approximately.

The second case to be analyzed considers everything equal to case one, except the signal-to-noise ratio, which is now
considered to be 20 dB (high noise level). Table 2 shows the results obtained for the second case. From Table 2, one can
draw the same conclusions stated for case one. Although the magnitude of the noise for the second case is much larger
than the one for the first case, subtle variations on the estimated parameters were observed. The authors attribute these
slight variations to the fact that the peaks in the pseudo-experimental frequency response functions remain well-defined,
even for a high level of noise (see, for example, Fig. 3). From the analysis of Tables 1 and 2 it is easy to verify that

Table 2 – Estimated bending stiffness and aerodynamic damping coefficient with SNR � 20dB (case 2).

GITT FEM
NT EI α N EI α
100 16.436 0.0817 40 13.627 0.0826
150 16.436 0.0817 60 16.650 0.0822
200 16.436 0.0817 80 17.065 0.0818

there is no agreement between the estimated and exact values for the bending stiffness. A simple sensitivity analysis
around the estimated solution reveals that, in the frequency range adopted, the sensitivity of the response of the system
to parameter α is much larger than its sensitivity to the bending stiffness. In fact, one can also conclude that the lower
the frequency, the less sensitive the system becomes to the bending stiffness; therefore, the estimation process gets harder
to be accomplished. Based on the numerical experiments performed in this work, the authors conclude that, in order to
improve the estimates for the bending stiffness, higher frequencies (in the range of 50 Hz to 80 Hz) must be taken into
account during the estimation process.
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Figure 3 – Comparison of the pseudo-experimental and estimated frequency response functions for the
frequency band (0, 8) Hz.
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Experimental evidences on a laboratory span indicate that part of the energy provided by the excitation source is
dissipated at the conductor clamps. Based on this information and in order to make the experimental simulated data closer
to reality, for the third case the authors decided to include a concentrated dissipation at the ends of the FEM model used
to generate the pseudo-experimental FRFs. These concentrated dissipations are modelled as viscous rotational dampers at
x � 0 and at x � L with damping constants equal to c0 � cL � 10N �m � s �

rad. Few works have attempted to quantify such
concentrated dissipation in terms of the energy input by the excitation source; therefore, the values of c0 and cL adopted
in the simulations may be unrealistic. The model which is going to be used for the estimation process does not take into
account such concentrated dissipations. The objective here is to verify how concentrated dissipations not included in the
theoretical model may affect the estimation process. Table 3 shows the results obtained for the third case with a high level

Table 3 – Estimated bending stiffness and aerodynamic damping coefficient with SNR � 20dB and concentrated
dissipation at the conductor ends (case 3).

GITT FEM
NT EI α N EI α
100 48.238 0.2566 40 44.795 0.2706
150 48.238 0.2565 60 47.992 0.2681
200 48.238 0.2565 80 48.382 0.2676

of noise (SNR = 20 dB). Because of the concentrated dissipations, both the bending stiffness and the viscous damping
coefficient are largely overestimated. Similar results to the ones indicated on Table 3 were obtained for other levels of noise
and damping constants c0 and cL. The important conclusion extracted from Table 3 is that if the concentrated dissipation
at the ends are not negligible, the values obtained for the conductor bending stiffness and damping parameters may be
quite far away from their exact values. Hence, knowing the order of magnitude of the energy dissipated at conductor
clamps is highly desirable. Only in this way, the researchers will be able to judge if such concentrated dissipations shall
be included or not in the theoretical models.

In order to reproduce real-like experimental shortcomings, the authors decided to analyze the effects of model uncer-
tainties on the estimated parameters. In the fourth case, the authors assume an uncertainty of +5 cm in the model span
length L, which corresponds to 0.08% of the span length. It should be emphasized that the pseudo-experimental FRFs are
the same used for case 1, i.e., they were built based on the nominal parameters (defined in the first paragraph of section
4) and with no dissipation at the conductor ends. Table 4 shows the results obtained for case 4. For the sake of simplicity,

Table 4 – Estimated bending stiffness and aerodynamic damping coefficient with SNR � 90dB, considering an
uncertainty of +5 cm (+0.08%) in the span length L.

GITT FEM
EI ∆EI � % � α ∆α � % � EI ∆EI � % � α ∆α � % �

34.233 209 0.08715 7 31.163 182 0.08346 3

the authors decided to define an error measure associated to the estimated parameters. This error measure is defined as
follows:

∆P �

�
P̂ � Pexact �

Pexact
� 100% (29)

where P̂ and Pexact denote, respectively, the estimated and the exact parameter values. From the analysis of Table 4 three
points should be remarked. First, the error for the estimated bending stiffness is much larger than the one for the estimated
aerodynamic damping coefficient. While one is acceptable (7%-GITT, 3%-FEM) for the parameter α , the other one, for
the bending stiffness EI, is around 200%. Second, the large discrepancies verified for the bending stiffness are associated
with the low sensitivity of the objective function with respect to this parameter in the analyzed frequency band. For
instance, considering the same estimation problem analyzed in case 4 but reducing the frequency band from (0, 20) Hz to
(0, 10) Hz provides the results EI � 105 � 35 (∆EI � 852%) and α � 0 � 0878 (∆α � 8%), when the FEM model is used.
Third, an increase in the estimated bending stiffness was already expected inasmuch as an increase in the span length
reduces the stiffness of the system.

In the fifth case, the authors assume an uncertainty of -214 N in the model mechanical load T , which corresponds to
-2% of the mechanical load. It should be emphasized that such percentage variation is expected in the laboratory tests
with actual transmission line conductors. Table 5 shows the results obtained for case 5. From Table 5 one may note that
the levels of error for both parameters are very high. Obviously, the increase in the bending stiffness is a straightforward
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Table 5 – Estimated bending stiffness and aerodynamic damping coefficient with SNR � 90dB, considering an
uncertainty of -214 N (-2%) in the mechanical load T .

GITT FEM
EI ∆EI � % � α ∆α � % � EI ∆EI � % � α ∆α � % �

228.35 1963 0.3064 277 225.26 1940 0.444 446

result due to the fact that the decrease in the mechanical load leads to a decrease in the stiffness of the system. At the
present moment no further conclusions can be stated for this last case which demands more numerical experiments.

CONCLUDING REMARKS AND COMMENTS FOR FUTURE WORKS

In the present work the transmission line conductors were modelled as homogeneous beams with viscous damping and
their bending stiffness and damping parameters were estimated. The mathematical formulation of the physical problem
was developed under the framework of an Euler-Bernoulli beam subjected to small displacements. The direct problem was
solved analytically, by means of the GITT technique, and numerically, by means of the finite element method. A suitable
frequency-domain error function was defined as the sum of squares of the differences between measured and estimated
frequency response functions. The inverse problem comprised the minimization of such an error function by means of
the classical Levenberg-Marquardt parameter estimation technique. Several simulation examples have been performed
in order to assess the effectiveness of the estimation procedures. Aiming at obtaining conditions closer to reality, the
simulations were performed considering a reduced number of available sensors over the structure and noise-corrupted
measurements.

For the cases analyzed in this work, the main conclusions are: (i) the objective function is much less sensitive to the
bending stiffness than the aerodynamic damping coefficient in the frequency band (0, 20) Hz; (ii) the estimates for the
aerodynamic damping coefficient were, in general, in agreement with its exact value; (iii) the estimated parameters were
practically unaffected by the considered levels of signal-to-noise ratio; (iv) the uncertainty in the span length affected
much more the bending stiffness than the aerodynamic damping coefficient; (v) the uncertainty in the mechanical load
largely affected both parameters.

The main contributions of the current work are: the numerical analysis of the estimation of two parameters of trans-
mission line conductors, namely, the bending stiffness and the aerodynamic damping coefficient and the use of GITT
technique to solve the associated direct problem. The numerical analyses have taken into account the effect of model
uncertainties on the estimated parameters what, to the authors belief, are not considered in the literature for this specific
problem. As for the direct problem, the authors would like to highlight that, although they also solved it by means of the
FEM method, they did not have any intention of making comparisons; the main purpose was to have two ways to solve it.
Lastly, for future works, the authors intend to extend the estimation procedure for higher frequency bands, to improve the
damping models and to perform experimental analyses.
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