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Abstract.  Structural optimization has matured to the point that it can be routinely applied to a wide range of real 
design tasks.  The purpose here is threefold.  First, the general optimization task will be defined.  Second, the state 
of the art in structural optimization will be reviewed.  Finally, examples will be presented to demonstrate the level of 
sophistication possible in applying this technology.  It is concluded that, while much research always remains, 
optimization technology has matured to the point where it can and should be used routinely for engineering design. 
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1 Introduction 
 
With his landmark paper in 1960, Schmit ushered in over forty years of intensive development in structural and 
general purpose optimization research.  This has culminated in numerous commercial products that are available 
today to solve design problems of remarkable size and complexity.  These basic developments, together with 
modern graphical interfaces, makes it possible to use this technology with very little formal training in optimization 
theory. 

Despite the widespread availability of this technology, it is seldom taught as a design tool by universities and 
remarkably underutilized by industry.  Yet the motivation to use optimization is compelling. For automobiles, a ten 
percent mass reduction will increase fuel economy by about seven percent.  Only a one percent economy 
improvement will save nearly three billion dollars per year in the U.S. at the pump.  Similarly, by reducing the mass 
of a commercial aircraft by about two hundred pounds adds a paying passenger for the life of the aircraft.  A one 
pound reduction in the mass of a spacecraft will either add a pound of payload or save about $20,000 per flight to 
space.  The list of examples could continue for pages.  Even beyond the cost argument, the savings in natural 
resources through the use of optimization could be immense. 

The purpose here is to briefly review the development of structural optimization leading to the current state of 
the art and offer examples to demonstrate the power of to enhance the design process. 

2 What is Design Optimization? 
Optimization is intrinsically tied to our desire to excel, whether we are an athlete, artist or engineer. We all 

adjust some parameters, perhaps our time, to minimize or maximize one or more results such as income, leisure time 
or job satisfaction. We do this subject to limitations or constraints, such as physical ability, time available, legal 
restrictions or moral codes of conduct. Thus, whatever our field of endeavor, we constantly strive to solve a con-
strained optimization problem. 

In engineering, we create products. To do this, we normally use computer analysis to judge the quality of our 
designs. We use computational fluid dynamics codes to calculate energy requirements and flow patterns in a ducting 
system. We use finite element analysis to calculate stresses, deflections, vibration frequencies, etc. of a structure. In 
almost all disciplines, we use computational, and sometimes experimental, tools to judge the quality of our proposed 
designs. If not satisfactory, we modify the design and perform repeated analyses in an effort to improve the product, 
or at least meet the design requirements. 

This traditional approach of analyze and revise normally involves only changing a few variables (often only one) 
at a time and does not account very well for the interaction among the variables. 

Now imagine we can change large numbers of design parameters simultaneously in order to improve the design 
while satisfying all design requirements, at the same time accounting for the interactions among the parameters. This 
is exactly what numerical optimization does. 

Our computer analysis program has a set of inputs that we may consider to be contained in a vector X. Based on 
this input, the analysis provides outputs. One or more of these outputs can be called an objective function which we 
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wish to minimize or maximize. Other outputs may be required to be within some bounds. These we call constraints. 
Both the objective(s) and constraints are functions of the input or design variables contained in X. 

Numerical optimization solves the general problem: Find the values of the design variables contained in X that 
will; 

 
Minimize   

( )F X   (1) 

Subject to: 

( ) 0 1,jg X j m≤ =   (2) 

1,L U
i i iX X X i n≤ ≤ =   (3) 

The function, F(X) is referred to as the objective or merit function and is dependent on the values of the design 
variables, X, which themselves include member dimensions or shape variables of a structure as examples. The limits 
on the design variables, given in Equation , are referred to as side constraints and are used simply to limit the region 
of search for the optimum. For example, it would not make sense to allow the thickness of a structural element to 
take on a negative value. Thus, the lower bounds are set to a reasonable minimum gage size. If we wish to maximize 
F(X), for example, maximize fuel economy, we simply minimize the negative of F(X).  

The ( )jg X are referred to as constraints, and they provide bounds on various response quantities. A common 

constraint is the limits imposed on stresses at various points within a structure. Then if σ is the upper bound 
allowed on stress, the constraint function would be written, in normalized form, as 

1 0ijkσ
σ

− ≤   (4) 

where 
i = element 
j = stress component 
k= load condition 
 
Additionally, we could include equality constraints of the form 

( ) 0 1,kh X k l= =   (5) 

Normally, equality constraints can be included in the original problem definition as two equal and opposite 
inequality constraints. 

Now consider how we might solve this general optimization problem. One approach would be to pick many 
combinations of the design variables and call our analysis program to evaluate each, picking the one with the best 
objective function which also satisfies all constraints. This would be a classical random search approach or perhaps 
the modern version known as genetic search (Hajela, 1990). 

Another approach would be to perturb each design variable and evaluate the objective and constraint functions. 
This would determine the sensitivity (gradient) of the design with respect to the variables. With this information, we 
can mathematically (numerically) determine how to change the design variables to improve the objective while 
satisfying the constraints. There are a multitude of such “gradient based” methods and considerable software 
available today (Vanderplaats, 2001). 

These methods closely model what we do in design already. Normally, we begin with a candidate design and ask 
“How can we change the design to improve it?” Thus, we modify our design as; 



 

New OldX X Xδ= +   (6) 

Optimization does much the same thing, but in two steps. First, we ask what direction to move in and then we 
ask how far to move. That is, 

New OldX X Sα= +   (7) 

where S is the search direction and α is the number of steps we move in this direction (partial steps are allowed). 
The difference in optimization algorithms is mainly in how we calculate the search direction, S, and how we do 

the “one-dimensional search” to determine α. The key point here is that all variables are considered simultaneously 
according to their effect on the objective function and all constraints. Also, since this is all automated and today’s 
computers are very fast, we can find an optimum design with much less time and effort than just finding an accept-
able design using traditional methods. 

This problem statement provides a remarkably general design approach and a multitude of methods are available 
today for solving this general problem. Much of the theoretical development has been in the operations research 
community and applications there are widespread today. In engineering, while development has been underway for 
over forty years, applications have lagged far behind. The time has come for that to change. 

3 Optimization History 
Structural optimization dates to the work of Maxwell (1869) and Mitchell (1904).  The modern, computer based, 

era of structural optimization was ushered in by Schmit’s classical paper in 1960, though in his 1981 review of 
Structural Synthesis development, he credits a paper by Klein (1955) for providing some key ideas.   

Here, we will briefly offer a narrative of the development of general optimization algorithms followed by 
development of structural optimization.  The distinction is that general optimization provides the actual optimization 
algorithm while structural optimization offers advanced methods for making the best use of these algorithms.  Most 
of these details may be found in Vanderplaats (2001). 

3.1 Optimization Algorithms 
During the 1950s and early 1960s, random search methods were popular, where the components of the X vector 

were chosen randomly, an analysis was performed and if an improved design was found, it was kept.  This was 
repeated until no progress could be made or computer resources were exhausted (the usual case).  The choice of 
random values could be the actual values of Xi or perturbations of these values.  Some researchers observed that, 
after some time, they could create a vector from the worst to the best design and accelerate the process by moving in 
this direction.  One might observe that this is a (rather poor) gradient search.  These methods are easy to program but 
are very inefficient and are limited to only a few variables. 

Focus during the 1960s included Sequential Linear Programming (Kelly, 1960) (SLP), Sequential Unconstrained 
Minimization Techniques (Fiacco and McCormick, 1968) (SUMT) and Feasible Directions methods (Zoutendijk, 
1960).  Though some non-gradient based methods were also developed during this period, these gradient based 
methods were generally considered to be more efficient and reliable. 

The 1970s saw development of the Augmented Lagrange Multiplier (Rockefellar, 1973) and Generalized 
Reduced Gradient (Gabriel and Ragsdell, 1977) methods.  These methods had the advantage that they have a strong 
theoretical basis in the Kuhn-Tucker conditions for optimality.  The idea is that, by creating an algorithm that will 
drive the design to a Kuhn-Tucker point, improved efficiency and robustness will result.  During the late 1970s, 
development of response surface methods began (Vanderplaats, 1979 and Myers and Montgomery, 1995) and has 
continued since. 

The 1980s were a period of refinement ending with renewed interest in random methods in the engineering 
community and Sequential Unconstrained Minimization Techniques by the operations research community.  The 
random (and related) methods include Genetic Search (Hajela, 1990), Simulated Annealing (Nemhauser and 
Wolsey, 1988) and related methods that attempt to mimic natural evolutionary processes.  The Sequential 
Unconstrained Minimization Techniques focused on interior point methods based on the Kuhn-Tucker conditions 
(Hagar, et al, 1994).   

Throughout the 1990s, Genetic Search algorithms were the focus of considerable research by the engineering 
community and a new method called Particle Swarming was added (Venter and Sobieszczanski-Sobieski, 2003).  
Meanwhile, the operations research community focused on interior point methods and continued to refine these.  For 



 

engineering problems, an exterior penalty function 
method was developed for solution of very large 
scale continuous and discrete variable problems 
(Vanderplaats, 2004). 

As optimization algorithms have improved, the 
size and complexity of the engineering 
applications has grown.  Figure 1 shows the trend 
in engineering problem size beginning in 1960.  
While there is considerable scatter in the data to 
create this figure, it is seen that there has been an 
exponential growth in problem size. 

3.2 Structural Optimization 
Structural optimization began in earnest with 

Schmit’s classical paper (1960).  This ushered in 
the era of numerical search methods which were 
more general than previous analytically based 
methods such as Shanley’s work (1952).  The 
1960s saw a great deal of research in structural 
optimization, dealing mainly with member sizing 
of trusses, frames and shell structures.  Initially, 
gradients were calculated by finite difference 
methods.  It was not until 1965 that gradients were 
calculated analytically and this happened with such little fanfare that the original published work by Fox (1965) on 
calculating gradients analytically is relatively unknown and seldom referenced.   

Gradients of displacements are calculated from the basic finite element analyses equations,  

Ku P=   (8) 

From which 

1

i i i

u P KK u
X X X

−  ∂ ∂ ∂
= − ∂ ∂ ∂ 

  (9) 

Because the stiffness matrix has already been decmposed, this is a simple and efficient calculation.  From this 
the derivatives of stresses are calculated from the stress recovery equations.  Derivatives of eigenvalues and 
eigenvectors, as well as various other responses are calculated in a similar fashion. 

By the end of the 1960s it was becoming apparent that numerical optimization was limited to perhaps fifty 
variables and was computationally too expensive to the a usable design tool.  This was particularly emphasized in a 
paper by Galletly, Berke and Gibson (1971) when they called the 1960s “the period of triumph and tragedy” for 
structural optimization.  Thus, the 1970s began the era of optimality criteria methods.  Optimality criteria offered the 
ability to deal with large numbers of design variables but with a limited number of constraints and without the 
generality of numerical optimization methods.  Numerical optimization methods were given new life in 1974 when 
Schmit and Farshi (1974) published their work on approximation concepts.  These methods were based on the 
concept of creating approximations using the underlying physics to allow for large moves and this reduced the 
number of detailed finite element analyses from well over 100 to the order of ten.  For statically determinate trusses 
or membrane structures, these approximations were shown to be exact for stress and displacement constraints.  
Parallel to the development of approximation concepts, the adjoint method for gradient computations was developed 
(Arora and Haug, 1979 and Vanderplaats, 1980).  Finally, in the late 1970s Fleury and Sanders (1977) reconciled 
numerical optimization and optimality criteria methods by showing that optimality criteria are closely related to 
duality theory in numerical optimization.   

For a detailed understanding of the development and state of the art at the end of the 1970s, Schmit’s AIAA 
History of Key Technologies (1981) paper is an excellent resource. 
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Figure 1. Growth in Optimization Problem Size
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Figure 2.  Simple Rod

The 1980s were a period of refinement and the initial steps of creating commercial structural optimization 
software.  Second generation approximations were created using force approximations (Bofang and Zhanmei, 1981 
and Vanderplaats and Selajegheh, 1989) instead of the earlier stress approximations.  Similarly, Releigh quotient 
approximations were created for eigenvalue constraints (Canfield, 1990).  These new approximations expanded the 
element types to shell and frame elements among others.  Importantly, for such elements as frames it was now 
possible to treat the physical dimensions as design variables and section properties as intermediate variables so that 
the designer could now deal with the actual variables of interest. 

To understand the basic concept of formal approximations, consider the simple rod shown in Figure 2.  The 
objective is to minimize the volume subject to a stress limit.  That is, letting the design variable, X=A, 

 
Minimize   

XL                                                                                 (10) 

Subject to; 

F
X

σ σ= ≤                                                                                (11) 

Note that the objective is linear but the constraint is nonlinear.  We could linearize 
both and repeatedly solve the problem using this approximation.  Such an approach is 
just sequential linear programming and is generally not very reliable or efficient. 

Now consider a change in variables so X = 1/A.  The problem is now 
 
Minimize 

L
X

  (12) 

Subject to; 

FXσ σ= ≤   (13) 

We’ve now converted the problem to one with a linear objective and a nonlinear constraint to one with a 
nonlinear objective with a linear constraint.  Such a problem is better conditioned for optimization.  Furthermore, we 
can create a linear approximation to the constraint and keep the original objective, since it is easily calculated, along 
with its derivatives.   

That is, 

0
X Xσ σ σ δ≈ + ∇ •   (14) 

This approach was offered by Schmit and Farshi (1974) in the 1970s and this allowed us to solve structural 
optimization problems of rods and membranes with an order of magnitude improvement in efficiency. 

In the 1980s, Bofang (1981), and Vanderplaats and Selajeghgh (1989) proposed approximating the force on the 
elements instead of approximating the stress. 

Thus, 

0
AF F A

A
δσ +∇ •

≈   (15) 

This is actually a higher order approximation and is also applicable to elements other than rods and membranes.   



 

             
 
Figure 4.  Shape Optimization 
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   Figure 3.  Modern Structural  
                     Optimization  

Figure 3 shows the organization of a modern structural 
optimization program.  The general approach is to first perform an 
analysis and evaluate all constraints.  These are then screened to 
eliminate, temporarily,  those that are not critical or near critical.  
Then, the sensitivity analysis is performed.  The approximate problem 
is then generated and solved.  The key points are that the 
approximations are based on physics and are of very high quality and 
that the optimizer never actually calls the finite element analysis.  The 
result is that optimization normally requires only 10 or so detailed 
finite element analyses to achieve an optimum, even when there are 
very large numbers of design variables and constraints. 

In recent years, topology optimization has become popular.  Here, 
given a design volume filled with material, the objective is to find the 
stiffest structure using a specified fraction of the material.  This is a 
powerful tool for defining an initial structure for later refinement 
using shape and sizing optimization. 

4 Optimization in a Commercial Environment 
Although some commercial optimization capabilities were developed in the early years, the serious 

commercialization of this technology began in the late 1980s and began to proliferate in the 1990s and today.  
Commercial software generally falls into two distinct categories; general purpose optimization and fully integrated 
finite element based structural optimization.  With few exceptions there has not been a significant effort to “tightly 
couple” optimization with other disciplines such as computational fluid mechanics.    

Due to the nature of optimization algorithms and their implementation,  the capabilities and features of the 
various offerings can differ greatly so some effort is needed to choose the best software for a particular group or 
company.  Most vendors take considerable effort to create “user friendly” software so the user does not need to be 
an expert in optimization theory. 

5 Examples 
Examples are presented here to demonstrate the breadth of design tasks that can be routinely solved with modern 

commercial optimization software.  Most problems solved in a purely research environment are not sophisticated 
enough to be useful here and most real commercial problems are proprietary and cannot be published.  Therefore, 
these examples fall somewhere between academic and real commercial products.  The linear analysis based 
structural optimization examples are solved by GENESIS.   

5.1 Shape Optimization of a Pin 
Figure 4 shows a cutaway of a symmetric structure with a load on the 

steel pin.  The outer structure is ceramic and the intermediate portion is an 
adhesive.  The objective is to change the shape of the outer structure to 
minimize the maximum stress with deformation limits.  This is a nonlinear 
contact problem solved by coupling the ABAQUS analysis software with the 
VisualDOC general purpose optimization software.  Nine shape variables 
were used and the maximum stress was reduced by eleven percent.  This is 
typical of the improvement optimization provides for an existing design.  
The nonlinear codes, such as ABAQUS, LS-Dyna, PamCrash, etc. to not use 
the high quality approximations available for linear analysis based 
optimization so this coupling of the analysis with a general purpose 
optimizer is the typical approach.  This is a perfectly valid optimization 
approach and the only negative is that it requires many more analyses than 
for the linear case.  This is alleviated somewhat by parallel processing but is 
still relatively expensive.  Using this approach, we can solve nonlinear 
contact problems such as this, crash energy absorption and air bag 
deployment optimization and airfoil optimization, as examples. 
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Figure 6.  Support 

 
Figure 5.  Car Body Reinforcement 

Initial Design Final Design
 
Figure 7.  Skeletal Support 

5.2 Car Body Reinforcement 
As noted above, structural optimization is more advanced than general purpose optimization because we can 

calculate gradients of the needed responses and because we have very high quality approximation techniques to 
provide efficiency and reliability. 

Figure 5 shows a car body model which we wish to reinforce to increase the bending and/or torsion frequency.  
The approach used here was to allow every element in the model was optimized for thickness (with a lower bound 
of the original design) with the constraint that only a specified fraction of the material may be used.  Here, 34,560 
sizing variables were used.  While somewhat difficult to see in Figure 5 (unless viewed in color), reinforcement was 
added in the areas of the firewall, rocker panels and rear fender areas. 

Table 1 gives the increase in bending or torsion frequency for different values of added mass. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3 Topology Optimization of a Simple Support 
Figure 6 shows topology optimization of a simple 

support.  This was a 100,000 variable example where 
the density of each element was designed.  The key 
feature here is that manufacturing constraints were 
imposed to insure that the part could be cast. 

5.4 Topology Optimization Without 
Manufacturing Constraints 

If topology optimization is performed without 
considering manufacturing issues, very attractive 
structures are often produced but these cannot be 
easily manufactured.  Figure 7 is such an example 
where just over one million design variables were 
used.  This structure was optimized to minimize strain 
energy under the applied load. 

It is noteworthy that topology optimization seldom 
produces a final part, even though manufacturing 
constraints are used.  This is because topology 
optimization normally does not include stress and 
other constraints.  However, it does identify load 
paths and provides a very good starting point for 
shape and sizing optimization. 

5.5 Various Automotive Design Examples 
Figure 8 shows various applications in the automotive industry.  These are actual design examples and so details 

are proprietary.  However, it is clear that real structures can be efficiently designed with optimization.  In some 
cases, special features need to be added to the software to achieve reasonable results.  For example,  the fuel tank 
was stiffened by adding the indentations (beads) to the bottom.  If the optimization software had been used without 

Table 1.  Frequency Increases 
 

Increased Frequency (Hz) Added
Mass 
(Kg) 

Maximize First 
Torsion 

Frequency 

Maximize First 
Bending 

Frequency 
2.64 4.81 6.42 
7.32 7.56 9.89 

15.06 9.66 11.22 
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Figure 8.  Automotive Design Examples 
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Figure 9.  Heat Shield Optimization 

consideration of the real design conditions, an unreasonable design would have resulted.  This is because the stiffest 
design would be one with much different but stiffer indentations but at the cost of greatly reducing fuel capacity.  
The solution was to create “volume” elements inside the tank and constraining this volume to be the required 
capacity. 

 

6 Heat Shield Optimization 
Figure 9 shows a heat shield where it is desired to add a bead pattern in order to increase the first bending 

frequency without increasing the mass.  The initial design has a frequency of 9.4 Hz.  By automatically designing 
the bead pattern, the frequency was increased to 40.1 Hz. 
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Figure 10.  Heat Shield Optimization 

7 Matching Modal Frequencies 
An aerospace application is to design a fin such as 

that shown in Figure 10 to match desired frequencies.  
This may occur when a vibration test is performed and 
it is desired to adjust the finite element model to match 
the measured values.  Figure 10 shows an example of a 
typical missile fin.  Here, the thickness of the solid fin 
was designed to give a first frequency of 5 Hz +0.2 Hz 
and a second frequency greater than 12 Hz.  
Additionally, stress and displacement constraints were 
imposed and it was required to minimize the mass.  
There were a total of 144 design variables and the mass 
was reduced 39% while satisfying the stress and 
displacement constraints.  The first frequency was 
moved from 3.37 Hz to 5.18 Hz and the second 
frequency was moved from 8.61 Hz to 12.04 Hz. 

8 Summary 
A narrative of the development of optimization leading to the current use of this technology in industry has been 

offered.  Development of this technology has followed two distinct tracks.  One is optimization algorithms for 
general applications and the other is special techniques for structural optimization.  The distinction is that structural 
optimization methods create a high quality approximation based on physics (as opposed to simple linearization) to 
improve efficiency and robustness and then uses a general purpose optimizer to solve this approximate problem. 

Commercial software is available for both classes of problems.  This software is highly refined and can be used 
with very limited knowledge of optimization theory.   

Finally, a variety of applications have been presented to demonstrate the power available today.  It is noted that 
some of these examples are not actual commercial applications because those are usually proprietary.  Indeed, to the 
best of this author’s knowledge, the largest structural sizing optimization problem solved in industry exceeds 
250,000 design variables with topology optimization problems exceeding two million variables.  

It is concluded that the state of the art is well refined and is readily available in the commercial environment to 
improve design quality, reduce design time and increase corporate profits.  Indeed, it is argued that no computational 
technology today is as effective as an advanced design tool as is numerical optimization.  
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