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Abstract 
 

In this talk I present some recent advances in the dynamics and control of constrained 
multi-body systems. The constraints considered need not satisfy D’Alembert’s principle 
and therefore the results are of general applicability. They show that in the presence of 
constraints, the constraint force acting on the multi-body system can always be viewed as 
made up of the sum of two components whose explicit form is provided. The first of these 
components consists of the constraint force that would have existed were all the 
constraints ideal; the second is caused by the non-ideal nature of the constraints, and 
though it needs specification by the mechanician who is modeling the specific system at 
hand, it nonetheless has a specific form. The general equations of motion obtained herein 
provide new insights into the simplicity with which Nature seems to operate. 
 
 

The general problem of obtaining the equations of motion of a constrained 
discrete mechanical system is one of the central issues in multi-body dynamics. While it 
was formulated at least as far back as Lagrange [1], the determination of the explicit 
equations of motion, even within the restricted compass of lagrangian dynamics, has been 
a major hurdle. The Lagrange multiplier method relies on problem-specific approaches to 
the determination of the multipliers which are often difficult to obtain for systems with a 
large number of degrees of freedom and many non-integrable constraints. Formulations 
offered by Gibbs [2], Appell [3], and Poincare [4] require a felicitous choice of problem 
specific quasi-coordinates and suffer from similar problems in dealing with systems with 
large numbers of degrees of freedom and many non-integrable constraints. Gauss [5] 
developed a general principle governing constrained motion for systems that satisfy 
D’Alembert’s principle, and Dirac [6] has offered a formulation for hamiltonian systems 
with singular lagrangians where the constraints do not explicitly depend on time. 
 

The explicit equations of motion obtained by Udwadia and Kalaba [7] provide a 
new and different perspective on the constrained motion of multi-body systems. They 
introduce the notion of generalized inverses in the description of such motion and, 
through their use, obtain a simple and general explicit equation of motion for constrained 
multi-body mechanical systems without the use of, or any need for, the notion of 
Lagrange multipliers. Their approach has allowed us, for the first time, to obtain the 
explicit equations of motion for multi-body systems with constraints that may be: (1) 
nonlinear functions of the velocities, (2) explicitly dependent on time, and, (3) 
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functionally dependent. However, their equations deal only with systems where the 
constraints are ideal and satisfy D’Alembert’s principle, as do all the other 
formulations/equations developed so far (e.g., Lagrange [1], Gibbs [2], Appell [3], 
Poincare [4], Gauss [5],  Dirac [6], Chataev [8], and Synge [9]). D’Alembert’s principle 
says that the motion of a constrained mechanical system occurs in such a way that at 
every instant of time the sum total of the work done under virtual displacements by the 
forces of constraint is zero. 
 

In this paper we extend these results along two directions. First, we extend 
D’Alembert’s Principle to include constraints that may be, in general, non-ideal so that 
the forces of constraint may therefore do positive, negative, or zero work under virtual 
displacements at any given instant of time during the motion of the constrained system. 
We thus expand lagrangian mechanics to include non-ideal constraint forces within its 
compass. Second, the explicit equations of motion are obtained. They lead to deeper 
insights into the way Nature seems to work. With the help of these equations we provide 
a new fundamental, general principle governing constrained multi-body dynamics. 
 

Consider first an unconstrained, multi-body system whose configuration is 
described by the n generalized coordinates .] , .  .  . , ,[ 21

T
nqqqq =  By ‘unconstrained’ we 

mean that the components, iq& , of the velocity of the system can be independently 
assigned at any given initial time, say, 0tt = . Its equation of motion can be obtained, 
using newtonian or lagrangian mechanics, by the relation 
 
 ),,(),( tqqQqtqM &&& = ,    ,)( 00 qtq =  00 )( qtq && =     (1) 
 
where the n by n matrix M is symmetric and positive definite. The matrix ),( tqM  and the 
generalized force n-vector (n by 1 matrix), ),,( tqqQ & , are known. In this paper, by 
‘known’ we shall mean known functions of their arguments. The generalized acceleration 
of the unconstrained system, which we denote by the n-vector a, is then given by  
 
 ),,(1 tqqaQMq &&& == − .       (2) 
 
We next suppose that the system is subjected to h holonomic constraints of the form 
 
 0),( =ϕ tqi , i  = 1, 2, .  .  . , h,      (3) 
 
and hm −  nonholonomic constraints of the form  
 
 0),,( =ϕ tqqi & , mhhi  , .  .  . ,2  ,1 ++= .     (4) 
 

The initial conditions =0q )( 0ttq =  and 0q& )( 0ttq == &  are assumed to satisfy 
these constraints so that 0),( 00 =ϕ tqi , i  = 1, 2, .  .  . , h, and 0),,( 000 =tqqi &ϕ , ,1+= hi  

mh  , .  .  . ,2+ . These constraints encompass all the usual holonomic and nonholonomic 
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constraints (or combinations thereof) that the multi-body system may be subjected to. We 
note that the constraints may also be explicit functions of time, and the nonholonomic 
constraints may be nonlinear in the velocity components iq& . Under the assumption of 
sufficient smoothness, we can differentiate equations (3) twice with respect to time and 
equations (4) once with respect to time to obtain the consistent equation set  
 
 ),,(),,( tqqbqtqqA &&&& =         (5) 
 
where the constraint matrix, A, is a known m by n matrix and b is a known m-vector. It is 
important to note that for a given set of initial conditions, equation set (5) is equivalent to 
equations (3) and (4), which can be obtained by appropriately integrating the set (5).  
 

The presence of the constraints (5) imposes additional forces of constraint on the 
multi-body system that alter its acceleration so that the explicit equation of motion of the 
constrained system becomes 
 
 ),,(),,( tqqQtqqQqM c &&&& += .       (6) 
 
The additional term, cQ , on the right hand side arises by virtue of the imposed 
constraints prescribed by equations (5). 
 

We begin by generalizing D’Alembert’s Principle to include forces of constraint 
that may do positive, negative, or zero work under virtual displacements. 
 

We assume that for any virtual displacement vector, ),(tv  the total work done, 
W ),,()( tqqQtv cT &= , by the forces of constraint at each instant of time t, is prescribed (for 
the given, specific dynamical system under consideration) through the specification of a 
known n-vector ),,( tqqC &  such that 
 
 ),,()( tqqCtvW T &= .        (7) 
 
Equation (7) reduces to the usual D’Alembert’s Principle when 0)( ≡tC , for then the 
total work done under virtual displacements is prescribed to be zero, and the constraints 
are then said to be ideal. In general, the prescription of C is the task of the mechanician 
who is modeling the specific constrained system whose equation of motion is to be 
found. It may be determined for the specific system at hand through experimentation, 
analogy with other systems, or otherwise. We include the situation here when the 
constraints may be ideal over certain intervals of time and non-ideal over other intervals. 
Also, W at any given instant of time may be negative, positive, or zero, allowing us to 
include multi-body systems where energy may be extracted from, or fed into, them 
through the presence of the constraints. We shall denote the acceleration of the 
unconstrained system subjected to this prescribed force C by CMtqqc 1),,( −=& . In what 
follows, we shall omit the arguments of the various quantities, except when needed for 
clarity. 
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We begin by stating our result for the constrained multi-body system described 

above. For convenience we state it in two equivalent forms [10, 11]. 
 

1. The explicit equation of motion that governs the evolution of the constrained 
system is: 

 
+−+=++= + )(2/1 AabBMQQQQqM c

ni
c
i&& CMBBIM 2/12/1 )( −+−  (8) 

 
or 
 
 )(2/1 AabBMaq −+= +−&& + cMBBIM 2/12/1 )( +− − .    (9) 
 

Equation (9) can also be expressed as 
 
 cMBBIMeBMaq 2/12/12/1 )( +−+− −+=−=∆ && .    (10) 
 

In equations (8)-(10), 2/1−= AMB , and +B  denotes the Moore-Penrose inverse of the 
constraint matrix A [12]; )(t∆  denotes the deviation of the acceleration of the 
constrained system, q&& , at time t from its unconstrained value, )(ta , at that time; and, 
the quantity )(:)( Aabte −=  represents the extent to which the acceleration a, at the 
time t, corresponding to the unconstrained motion does not satisfy the constraint 
equation (5). Later on, from a controls perspective we will call )(te  the ‘error signal.’ 

 
2. At each instant of time t, the total force of constraint, ,cQ  is made up of two 

additive parts. The first part, c
iQ , is the force of constraint that would have been 

generated were the constraints ideal at the time t; the second part, c
niQ , is created 

by the non-ideal nature of the constraints at the time t. These two contributions to 
the total constraint force are explicitly given by 

 
)(2/1 AabBMQc

i −= +        (11) 
 

and 
 
 CMBBIMQc

ni
2/12/1 )( −+−= ,      (12) 

 
where c

ni
c
i

c QQQ += . The subscripts i and ni refer to ideal and non-ideal, 
respectively. When 0)( ≡tC , the constraints are all ideal and then c

i
c QQ = . 

 
  Equation (10) leads to the following new fundamental principle of motion for 
constrained multi-body mechanical systems: 
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The motion of a discrete dynamical system subjected to constraints evolves, at each 
instant in time, in such a way that the deviation in its acceleration from what it would 
have at that instant if there were no constraints on it, is the sum of two M-orthogonal 
components; the first component is directly proportional to the extent, e, to which the 
accelerations corresponding to its unconstrained motion, at that instant, do not satisfy 
the constraints, the matrix of proportionality being +− BM 2/1 ; and, the second component 
is proportional to the given n-vector c, the matrix of proportionality being 

2/12/1 )( MBBIM +− − . 
 

We define two n-vectors u and w to be M-orthogonal if .0=MwuT  Since the 
Moore-Penrose inverse of a matrix, +B , may be unfamiliar to some, I provide here some 
of its properties, which will be used later on. Given an m by n matrix B, the n by m 
matrix +B  is a unique matrix that satisfies the following four relations: 

 
(1) BBBB =+ ;        (13a) 
(2) +++ = BBBB ;        (13b) 

 (3) ++ = BBBB T)( ; and,       (13c) 
 (4) .)( BBBB T ++ =         (13d) 
 

As stated in our fundamental principle above, the two components of acceleration 
engendered by the presence of the constraints are explicitly given by the last two 
members on the right hand side of equation (9). The M-orthogonality of these two 
members follows from the relations { } { }=− +−−+ )()( 2/12/1 BMMMBBI T  

=− ++ BBBI T)(  0)( =− ++ BBBI , where we have used relation 13(c) in the second 
equality and equation 13(b) in the last. 
 

The derivation of our result is as follows. 
The acceleration, q&& , of the constrained system must satisfy two requirements. It must be 
such that :  
(1) at each instant of time, t, it must satisfy the constraints given by equation (5), and, 
(2) the work W done under any virtual displacement by the force of constraint, cQ , must, 
at each instant of time t,  be as prescribed by relation (7).  
 
Since we require the acceleration of the constrained system to satisfy the consistent set of 
equations bAaMBaAqA =+∆=+∆= )()( 2/1&& , we have, from the theory of generalized 
inverses, 
 
 zBBIAabBM )()(2/1 ++ −+−=∆       (14) 
 
where z is any arbitrary n-vector, and +B  is the Moore-Penrose inverse (of the matrix 

2/1−= AMB ) whose properties are described in equations 13(a)-13(d). From equation 
(14) we then have 
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 ,)()( 2/12/1 cQQzBBIMAabBMQMMaqM +=−+−+=∆+= ++&&  (15) 
 
so that  
 
 zBBIMAabBMQc )()( 2/12/1 ++ −+−=      (16) 
 
To explicitly find cQ , we next determine the second member on the right in equation 
(16) in such a way as to ensure that the second of the above-mentioned requirements is 
satisfied.  
 
A virtual displacement at time t is any displacement that satisfies the relation 0=Av  at 
that time [13]. Since µBvMBAv == :)( 2/1  the explicit solution of the homogeneous set 
of equations 0=µB is simply 
 
 yBBIvM )(2/1 +−== µ ,  or, yBBIMv )(2/1 +− −=    (17) 
 
where y is any arbitrary n-vector.  And so from relation (7), we require that 
 
 TcT vQvW == [ CvzBBIMAabBM T=−+− ++ ])()( 2/12/1 ,  (18) 
 
where, at each instant of time, C is specified by the mechanician who is modeling the 
specific mechanical system. Using equation (17) in the last equality in (18) we get 
  
           ,)(])()([)( 2/12/12/12/1 CMBBIyzBBIMAabBMMBBIy TTTT −+++−+ −=−+−−
           (19) 
 
which, because y is arbitrary, yields  
 
 .)()()( 2/12/1 CMBBICMBBIzBBI T −+−++ −=−=−    (20) 
 
Relation (20) follows from (19) through the use of relations (13d) and (13b) because 
 

 ,0)]([])([)( 2/12/1 =−=−=− +++++−+ BBBIBBBIBMMBBI TT   (21) 
 

and, 
 ).())(()()( BBIBBIBBIBBIBBI T +++++ −=−−=−−    (22) 
 

Using (20) we then get  
 
 zBBIM )(2/1 +− = CMBBIM 2/12/1 )( −+−      (23) 
 
which when used in the second member on the right in equation (16) gives  
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 CMBBIMAabBMQc 2/12/12/1 )()( −++ −+−= ,    (24) 
 
and the result given by equation (8) now follows from equation (15).          
 

The explicit equations of motion obtained herein, like those obtained earlier for 
ideal constraints [7], are completely innocent of the notion of Lagrange multipliers. Over 
the last 200 years, Lagrange multipliers have been so widely used in the development of 
the equations of motion of constrained multi-body systems that it is sometimes tempting 
to mistakenly believe that they have an instrinsic presence in the description of 
constrained motion. This is not true. As shown in this paper, neither in the formulation of 
the physical problem of the motion of constrained multi-body systems nor in the 
equations governing their motion are any Lagrange multipliers involved. The use of 
Lagrange multipliers (a mathematical tool invented by Lagrange [1]) constitutes just one 
of the several intermediary mathematical devices invented for handling constraints. And, 
in fact, the direct use of this device appears difficult when the constraints are functionally 
dependent. Lagrange multipliers do not appear in the physical description of constrained 
motion, and therefore cannot, and do not, ultimately appear in the equations governing 
such motion. 
 

The simplicity of the general explicit equation of motion obtained herein relies on 
the interplay of four central observations: 

 
(1) No transformation of coordinates, or their elimination, is undertaken when 

constraints are present; the coordinates in which the unconstrained multi-body 
system is described are the same as those used to describe the constrained system.  
This, at first, appears to be counter-intuitive and indeed goes against a 200 year-
old, well-accepted current of practice in dynamics and theoretical physics that was 
first initiated by Lagrange. Such transformations and eliminations are often useful 
in handling problems of mathematical physics. However, it is the fact that we do 
not use them that appears to be ultimately responsible for the simplicity of the 
explicit equation obtained herein, and the fundamental insights about the nature of 
constrained motion provided by it. 

(2) The constraints are described in their differentiated form by equation (5); this a 
consequence of the realization that, at any instant of time t, the ‘state’ of the 
system, ))(),(( tqtq & , is assumed known, and it is the state immediately following 
this instant that must then be the focus of our inquiry. Our attention must then 
naturally focus on the system’s acceleration, q&& . 

(3) For a physical system where the constraint forces do work the equations of 
motion cannot be obtained solely through knowledge of the kinematical nature of 
the constraints as described by equations (3) and (4); one needs to have an 
additional dynamical characterization of the constraints given by the extension of 
D’Alembert’s principle (or some equivalent of it), as stated in equation (7). Such 
a characterization yields a unique equation of motion, as expected from, and 
consistent with, practical observation. 

(4) The Moore-Penrose inverse of a matrix shows an intrinsic presence in the 
equations of motion. It manages to sort out the manner in which the constraints 
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interact with the given forces (known acceleration, a(t)) to yield an equation of 
motion that is both simple and provides new physical insights. 

 
Lastly, it is worth mentioning that the general equations of motion obtained here have 

immediate application to the tracking-control of nonlinear multi-body systems [14, 15] 
— a problem that has been worked on for many decades, with weak success, by control 
theorists. For, the constraint force cQ   can be interpreted as the control force required to 
be applied to the nonlinear multi-body system which is described by equation (1) so that 
it ‘exactly’ satisfies the trajectory requirements imposed by equation (5) (equivalently, by 
equations (3) and (4)) at each instant of time. One then obtains the closed-form control 
force, given by equation (24). And this for a general, nonlinear multi-body system! In 
fact, this control force is exactly what Nature “would use” were it required to satisfy the 
constraint equations (3) and (4) (also thought of now as the trajectory requirements!) 
along with relation (7).  Furthermore, were we to set C≡0 (the ideal constraint case), we 
would obtain the force that Nature would employ to control the nonlinear multi-body 
system described by equation (1) with (ideal) constraints described by equations (3) and 
(4). We would then have 
 
 )(2/1 AabBMQQQqM control −+=+= +&& .     (25) 
 
And so we see that Nature appears to be actually behaving much as a control engineer 
would! For, the second member on the right in equation (25) can be thought of as 
providing ‘feedback control,’ using feedback proportional to the ‘error signal’ 

)(:)( Aabte −= , which measures the extent to which the acceleration that we know at 
time t, namely a(t), does not satisfy our trajectory requirement (5). However, it is in the 
choice of the ‘gain matrix,’ ),,(),(2/1 tqqBtqM &+ , that Nature seems to really excel! She 
picks the control gain with incredible ingenuity so as to exactly satisfy the trajectory 
requirement (5) at each instant of time. It is the choice of this matrix, which, in general, is 
a highly nonlinear function of q, q& , and t, that would most likely baffle our best control 
theorists! Such reinterpretations of the equations obtained in this paper within the 
framework of control theory show their considerable scope of applicability and utility. 
The details of this approach to the control of multi-body systems (accuracy and 
robustness, etc.) would be too long a story to present here. The interested reader may find 
them in Refs. [14] and [15]. 
 
In conclusion, we have extended the lagrangian formulation of mechanics to include 
constraints that may be ideal and/or non-ideal, and the equations of motion presented in 
this paper are applicable to multi-body mechanical systems that include such constraints. 
They appear to be the simplest and most comprehensive equations of motion so far 
discovered for such systems. 
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