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Abstract: The work shows the progress of a procedure to determine the position and volumetric information of an object, in the space of a work
cell.  The  determination is done based in area mapping through a virtual cube. This text  The work which has applications in robotics, and
manufacturing is a cooperation effort involving UNICAMP and PUCPR. Aspects of camera calibration geometry and the practical processing of
signals are addressed in the paper.
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1. Introduction
Modern  production processes require computational and robotic systems to execute many complex tasks in an automated way.

In this context, computer vision systems and image processing are used in production cells, to aid tasks such as robot orientation
and movement,  positioning of objects, quality control, and others.

In a robotic environment based on vision systems, the configuration of the work cell involves the positioning of cameras, in
order to provide image maps of objects from the real 3-D world. The process of relating image maps with 3-D objects is called
camera calibration, and is based on the representation of the scenario points in each camera. There are basically two ways of using
automatic vision:  via fixed cameras in the automated work cell or through a robot “hand-mounted” camera. The advantage of using
a camera mounted on a robotic arm,  is the obtention of a good visual field during the time of fly, but such a configuration requires
the recalibration for each position during the movement, as presented by Mota (2002). The fixed configuration, has the advantage
of estimating the calibration matrices only once, since there are no changes in the environmental configuration.  

The present work uses a fixed cameras model, in order to determine geometric  aspects of objects, such as volume and position.
It presents the mathematical model of a camera, as well as its calibration process. Vision systems can be set up with one or more
cameras. Although it is possible to have a a convenient map of the real 3D word using a single camera and a segmentation object,
as described by Ryoo (2004), a more flexible and efficient mapping system is based on stereo vision, using a pair of calibrated
cameras. The work also proposes a new way of  representing a solid position and dimension, based on referencing cubes. 

Estimation  of  the  essential  matrix  is  a  preliminary  step  in  obtaining  a  3-D model  of  correspondent  objects  in  a  pair  of
stereoscopic images. The essential matrix can be decomposed, using singular value decomposition (SVD) in order to recover the
rotation and translation parameters, within a non-iterative solution Tsai (1984), Fiore (2000). The parametric rotation matrix R and
the origin translation vector t are the relative positions of the cameras used for capturing the images. It is possible to calculate depth
measurements from a pair of images once their rotation matrix and origin translation vector have been estimated in an adequated
way Trucco (1998).   

Procedures for estimation of the essential matrix are found in 3D reconstruction applications, where metric accuracy is requested.
Different estimation approaches are presented by Salvi (2002), in the context of camera calibration methods. Borghese (2000),
describes in a simple manner, a technique based on the previously known information of a small number of matched image points,
associated with epipolar transformations Luong (1992). Lourakis (2000) suggests two strategies for indicating matching points in
an image pair. The first assumes an arbitrary knowledge of geometric constraints, and the second exploits the projective quantities
that remain invariant. Image matching can also be performed using a bilinear relation as presented by Faugueras (2000), or through
a Harris and Stephens detector, such as the one used by Oisel (2003). The Harris and Stephens detector is based on a corner
detector function, created by Moreavec, as cited in Bas (2002). In Moreavec's theory, candidate-matching points in an image must
have a high variance, such as the corners of an image object. Such a detector is a robust method based on autocorrelation measure,
as explained in Rockett (2002). 

An interesting method for the reconstruction of a 3D model from weakly calibrated images, with previous estimation of the
essential matrix, is presented by Oisel (2003). The proposed method for estimating the essential matrix is to be applied in similar
situations where a stereoscopic pair of images, or two different images obtained from a moving camera, is known, for a given solid.
Such applications are typical of a solid measurement/positioning verification system in an assembly line Rudek (2000), or obstacle
avoidance procedures for mobile robots in real environments Becker (2003).

The geometric background to enable the estimation of the essential matrix from camera information and the proposed range cube
thechnique is presented in this work, in the sequence that follows. Section 2 presents the epipolar geometry relations that are the
basis for 3-D image reconstruction. Section 3 presents the forming of the essential matrix, as well as an algorithm to estimate it
from a number of known image pairs. Section 4 describes the range cube aplication and section 5 presents the main conclusions of
this work.

2. Image formation
The mathematical representation of an image can be done through a relationship model  between the world coordinates of a 3D

point and its corresponding coordinates on the image plane. A way to perform this relationship, is to use a "pinhole" model, as in
Fusiello (2000). Such a model is presented in figure 1, where a 3D point  Pw(X,Y,Z), it is projected onto a point p'(x,y) on a 2D
image plane.



Figure 1. Geometric representation of the 3D point in the image plane.

The model consists of an image planeand a reference point  O in the 3D space, called the projection centre. The distance  f
between the image plane and O is the focal distance. The line trough O and perpendicular tois the optic axis. Point p’ is where the
straight line Pw O  , crosses the image plane. The 3D coordinate frame is P= [X,Y,Z]T and the frame of camera in metric units
is p’ = [x’,y’,f]. Therefore, it can be writen that,

p' = R P + t.   (1)

Using QR factorization as in Fusiello (2000) and Oisel (2003), leads to

p=[R ∣ t ]     (2)

which is the perspective projection matrix in homogeneous coordinates. The camera is then modeled by its rotation (R) and
translation (t) matrices, which represents its extrinsic parameters. A is the matrix of intrinsic parameters, and contains the internal
camera properties. 

2.1. Epipolar Geometry

Under 3D reconstruction, it necessary to work with  two images and to exploit their disparity for obtaining depth information.
However, establishing correspondences of points between two images is a difficult task. The epipolar constraints helps to limit the
searching regions for matching points.  

The work presented by Yi Ma (2004), considers two images of the same point p, taken from two distinct cameras, with centres in
O1 and O2, and image planes parallel to the xy  plane, as seen on figure 2. The intersections of  line 21oo with each image plane

are called epipoles and denoted by e1 and e2. Lines 1   and 2  are called epipolar lines, which are the intersection of the plane

poo 21  with the two image planes.

Figure 2 – Geometry of two image projections by YI Ma (2004), 

It can be seen, from the epipolar geometry relations, that all points along the line 1o p  have the same projection point x1 in the

image plane of camera 1. Therefore, it can also be said that the single projection point in camera 1 corresponds to the epipolar line

2 in camera 2.
Points x1 and x2 are the projections of point p on the image planes of both cameras. In spatial terms, the projection points can be

represented by 3-D vectors, x1 and x2, with coordinates x, y and f, relative frame systems placed at camera 1 or 2, respectively: 

x1=[x1

y1

f ] ,  x2=[ x2

y2

f ] (3)

where f is the focal distance of the image plane.
Camera 2 has a rotation matrix R, which contains the orientation of each axis, according to a system of reference coordinates,

arbitrarily fixed at camera 1:

O

y
x

Z

  Pw(X,Y,Z)

f

Image Plane

Optic Axis

p’

x'
y'

π



R=[r11 r12 r13

r21 r22 r23

r31 r32 r33
]                                                                            (4) 

where

11 12 13

21 22 23

31 23 33

cos cos sin sin cos cos sin cos sin cos sin sin
cos sin sin sin sin cos cos cos sin sin sin cos

sin sin cos cos cos

r k r k k r k k
r k r k k r k k
r r r

φ ω φ ω ω φ ω
φ ω φ ω ω φ ω

φ ω φ ω φ

= = + = − +
= − = − + = +
= = − =

and ω –  Rotation about x axis, θ –  Rotation about y axis, k –  Rotation about z axis.
Translation vector t gives the relative position of the two camera centres. A point p in the 3-D space, has coordinates X1 and X2,

with respect to relative frame systems placed at camera 1 or 2, respectively. Such coordinates are related by a rigid body
transformation in the following way:

X 2=R X 1t                        (5)

The spatial and camera projection coordinates of point p, are related in terms of the depth parameter λ in the following way:

X i=1 x i , i=1,2             (6)

It can be seen, from equations (5) and (6) above, that the 3-D coordinates of a point can be established, provided its projections
in cameras 1 and 2, as well as the rotation matrix and translation vector, are all known.  In practical applications of 3-D image
reconstruction, camera projections of spatial points are the known quantities. Relative camera rotation and origin translation vector
are not a priori known. The estimation of such quantities is the starting point on 3-D reconstruction techniques.

3. Essential Matrix Estimation
The epipolar constraint  can be represented by a matrix, called the essential matrix, when the intrinsic  parameters of the cameras

are known. Otherwise, it is called fundamental matrix, as presented by Forsyth (2003).
Equation (5) can be written in terms of projection coordinates and depths:

2 x2=R1 x1t           (7)

A translation cross product matrix T can be created as:

T=[0 −t x t y

t z 0 −t x

−t y t x 0 ]                   (8)

where  tx, ty and tz are the coordinates of the translation vector t. Matrix T has the following properties:

T t=0,           T x= T⊗x (9)

Premultiplying both sides of equation  (7) by T yields:

2
T x2= T R1 x1 (10)

Premultiplying equation  by the vector x2
T gives:

x2
T E x1

T=0 (11)

where E is the essential matrix defined as:

E= T R .  (12)

The essential matrix, comprised of the parameters of rotation and translation of the camera reference systems, is the information
to be retrieved in a 3-D image reconstruction application. Equation  (11) is also known as the essential constraint relation.

It is assumed that the essential matrix has the form:



E=[e11 e12 e13

e21 e22 e23

e31 e32 e33
] . (13)

A stacked form of matrix E is given as:

E ST=[e11 e21 e31 e12 e22 e32 e13 e21 e33]

Thus, the following homogeneous system of linear equations can be formed:

[a11 a12 ⋯ a19

a21 a22 ⋯ a29

⋮ ⋮ ⋮ ⋮
ak1 ak2 ⋯ ak9

]E S=0 ,        (14)

where akj is the j-th element of the Kronecker product, from the pair “k” of two projection vectors of the type x1 and x2:

ak=[ak1 ak2 ⋯ akj ⋯ ak9 ]=x1⊗x2 . (15)

A non trivial solution for the homogeneous system of equations  is found, for a number 8k ≥  of different pairs of projection
points. Furthermore, the k pairs of projected points must be originated in a non-coplanar surface of the 3-D space. A solution for ES

if found by computing the eigenvector of the coefficients matrix of the homogeneous system of equations, which corresponds to its
smallest eigenvalue. A solution to the essential matrix E, still has to be derived from the projection of the stacked vector ES onto
the space of defined essential matrices.

From the estimated essential matrix, it is possible to recover the camera’s rotation parameters matrix R, and a unit-normalized
vector  t.  The module of distance between the cameras origins must be known, in order to perform the estimation of  the 3-D
position of the projected points.

The procedure described above is formulated in terms of ideal camera parameters and image projections. In practice, although
the  basic  3-D coordinate  estimation  procedures remain the  same,  some pre-conditioning of  the projected parameters must be
performed in order to compensate for lenses distortion, camera origin offset and pixel deformation.

4. Solid Positioning Determination
Determination of a solid position and dimensions is an important feed-back information in automated processes. The present

work proposes a method to obtain volume and positioning information of a solid, using the mapping of a limited space around it.
This space is mapped in the form of a virtual cube. A cubic calibration grid is used in the region of interest for measuring the solid
positioning and dimension. 

An initial grid is obtained by processing the images of a solid calibration cube, and identifying on both images corresponding
points for camera calibratoin. Calibration and initial grid points can be those of the cube's visible vertices, mid surfaces and mid
edges.  After  removal  of  the  calibrating  cube,  its  verices and  edges are  used  as  references  for  generating  a  finer  virtual  3-D
mesh,which contains the object to be mesaured. Figure 3, presents two views of an object with the superimposed virtual cubic
mesh. 

     
Left   Right

An automated boundary location algorithm, based on epipolar geometry, is to be used in order to determine which of the virtual
cubes are occupying the same positions as the solid, and which are not. An estimation of the solid's volume occupied by elementary
cubes, as well as its location on the envolving prism, provides information on the solid's dimension and positioning.

5. Conclusion
The paper displays the progress of studies to estimate the position and dimensions of a solid in  a manufacturing cell.  The

background to image procesing theory is presented, arriving to the important point of estimation of the essential matrix, which is
the base for 3-D reconstruction techniques. 



Practical use of the 3-D reconstruction from a pair of stereoscopic images is proposed by means of definition of a virtual cubic
grid around the solid whose position and dimensions are to be determined. Such a procedure is convenient for the measurement of
solids in an automated assembly line, with a pair of fixed cameras, focused on the regin of measuring interest.

The work is under progress and the first practical results are about to be obtained.
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