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Abstract. For some years Operational Modal Analysis (OMA) has been used to get the mode shapes, damping factors
and resonance frequencies of structures. One of the main advantages of OMA is that the test is done in operational
conditions: the model will be linearised in much more representative working points compared to structures tested in
laboratory conditions. Using a sensitivity rescaling technique it also became possible to estimate the correct scaling
factors for structural modal analysis. Recently this rescaling technique used to estimate the correctly scaled structural
mode shapes in operational conditions has been extended to the acoustic domain. Now it is possible to get a scaled
acoustic modal model without the use of a volume-acceleration sound source. For coupled vibro-acoustic modes both
methods can be used to rescale these modes. In this contribution the combination of the structural rescaling technique
and the acoustic technique will be explained and validated by means of experimental results.
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1 Introduction

During the last years Operational Modal Analysis (OMA) has been frequently used to estimate the resonance frequen-
cies, the damping factors and unscaled mode shapes of many structures (Hermans and Van der Auweraer, 1999; Parloo
et al., 2003). One of the reasons is that the real boundary conditions are present. They often differ significantly from
the ones in laboratory testing. As all real-world systems are to a certain extent non-linear, the models obtained under
real boundary conditions will be linearised for much more representative working points. Another advantage is that the
measurements can be performed in situ.

More recently one has developed a technique which is based ona sensitivity analysis that makes it possible to get the
correctly scaled mode shapes. The technique can for examplebe used for large civil structures. This has been proved by
an experiment on a bridge (Parloo et al., 2004). Concerning this application OMA has the big advantage that one uses
the ambient forces to excite the structure and one doesn’t need drop-masses or other exciters which one still needs for
classical forced-vibration tests.

Because OMA has proved to be useful for structural problems,it was interesting to check if there wasn’t an acoustic
equivalent. An important argument for developing such an acoustic equivalent was that for the classical Acoustic Modal
Analysis (AMA) one needs volume acceleration sources whicharen’t widely available. Note also that when one uses
sound sources (by performing a classical Acoustic Modal Analysis) one alters the acoustic system that one wants to
model. These two arguments make Acoustic Operational ModalAnalysis (AOMA) even more interesting than Structural
Operational Modal Analysis (SOMA). It turned out that the acoustic equivalent makes use of local volume changes where
for structural OMA one uses local mass changes to perform a sensitivity analysis (De Sitter et al., 2004).

The identification of vibro-acoustic modes is important forseveral applications. The sound level in all kinds of cavities
(the interior of a car, train, airplane, etc.) must be minimised as much as possible. Concerning vibro-acoustic problems
the combination of the two operational techniques makes it possible to get all the scaled mode shapes. Vibration modes



can be rescaled using the Structural Operational Modal Analysis (SOMA) while the acoustic modes can be rescaled using
the Acoustic Operational Modal Analysis (AOMA). For coupled modes both techniques can be used.

In this contribution we will first focus on the theoretical aspects of the sensitivity-based mode shape normalisation.
The equivalences between the structural and the acoustic method will be discussed. Later on some experiments will be
dealt with. These experiments will focus on the rescaling ofstructural and acoustic mode shapes.

2 Theoretical Aspects

2.1 Analogy between acoustic and mechanical systems

Before we focus on the sensitivity based rescaling technique it is interesting to briefly recapitulate the analogy between
acoustic and mechanical systems. In the frequency-domain we get for dynamic undamped mechanical systems:

(

−ω2 · Ms + Ks
)

· X(ω) = F (ω) (1a)

with

Ms the structural mass matrix
Ks the structural stiffness matrix
X(ω) the displacement vector
F (ω) the force vector

(1b)

For dynamic undamped acoustic systems this results in:

(

−ω2 · Mf + Kf
)

· P (ω) = Q̇(ω) (2a)

with

Mf the acoustic equivalence of the mass matrix
Kf the acoustic equivalence of the stiffness matrix
P (ω) the pressure vector
Q̇(ω) the volume acceleration vector

(2b)

Note that the acoustic equivalence of the structural mass matrix in fact consists of acoustic compliances. This acoustic
compliance is defined as the ratio between the volume displacement and the pressure. (Augusztinovicz and Sas, 1996;
Sas and Augusztinovicz, 1999)

Mf
kl =

{

0 for k 6= l
Vkl

ρ·c2 for k = l
(3a)

with

Mf the acoustic equivalence of the mass matrix
Vkk the volume of element k of the cavity
c the speed of sound

(3b)

One can prove that the FRF-matrix of an undamped structural systemHs(s) can be calculated as (Heylen et al., 1997):

Hs
kl(ω) =

Nm
∑

n=1

Φs
k,n · Φs

l,n

m̄s
n · (ω2

n − ω2)
(4a)

with

m̄s
n the structural modal mass of moden

= {Φs
n}

t
· Ms · {Φs

n}
Φs

k,n the structural mode shape value of moden at point k
ωn the resonance frequency of moden

Nm the number of modes

(4b)



Table 1: Analogy between acoustic and mechanical systems

Variable for Structural Modal
Analysis

Variable for Acoustic Modal
Analysis

Φs Φf

Ms Mf

Ks Kf

X P

F Q̇

m̄s m̄f

The acoustic equivalent equation is (Kuttruff, 1979; Augusztinovicz, 2000):

Hf
kl(ω) =

Nm
∑

n=1

Φf
k,n · Φf

l,n

m̄
f
n · (ω2

n − ω2)
(5a)

with

m̄f
n the acoustic equivalence of the modal mass of moden

=
{

Φf
n

}t
· Mf ·

{

Φf
n

}

Φf
k,n the acoustic mode shape value of moden at point k

ωn the resonance frequency of moden

Nm the number of modes

(5b)

If one compares (4) to (5) one can conclude that the same formula’s can be used for the sensitivity analysis if one uses the
correct variables. Tabel 1 shows the equivalent variables.

Note that m̄f

ρ·c2 is nothing less than the volume matrix of the cavity.

2.2 Sensitivity-based rescaling

For structural operational modal analysis a rescaling method already has been developed. (Parloo et al., 2002) This
method has the big advantage that one can calculate the scaled mode shapes while one doesn’t need to know the sources.
This technique already has been used for several applications. (Parloo et al., 2003; Parloo et al., 2004)

The technique is based on the sensitivity analysis of modal parameters. For example, the resonance frequencies of
undamped structural systems will shift by changing the massmatrix locally (e.g. by adding some massmi at point i)
(Heylen et al., 1997):

∂ωn

∂mi

= −ωn

Φs2

i,n

2 · m̄s
n

(6)

Because the operational mode shapesΨs aren’t correctly scaled, one can write that each scaled modeshapeΦs
i,n equals

the operational mode shapeΨs
i,n multiplied by a scaling factorαn:

Φs
i,n = Ψs

i,n · αn (7)

One can linearise (6) and combine it with (7). The scaling factor can be calculated by:

αn =

√

√

√

√

−2 · m̄s
n · ∆ωn

ωn ·
(

∑Nc

i=1
Ψs2

i,n · ∆Ms
i

) (8)

If one wants to use a mass-normalised scaling-scheme (8) becomes:

αn =

√

√

√

√

−2 · ∆ωn

ωn ·
(

∑Nc

i=1
Ψs2

i,n · ∆Ms
i

) (9)



For Acoustic Operational Modal Analysis the same techniquecan be used. If one uses the acoustic equivalent variables
that are listed in Table 1 equation (8) becomes:

αn =

√

√

√

√

−2 · m̄f
n · ∆ωn

ωn ·
(

∑Nc

i=1
Ψf 2

i,n · ∆Mf
i

) (10a)

=

√

√

√

√

√

−2 · V̄
f

n

©
©ρ·c2 · ∆ωn

ωn ·
(

∑Nc

i=1
Ψf 2

i,n · ∆ Vi

©
©ρ·c2

) (10b)

=

√

√

√

√

−2 · V̄ f
n · ∆ωn

ωn ·
(

∑Nc

i=1
Ψf 2

i,n · ∆Vi

) (10c)

with

V̄ f
n =

{

Φf
n

}t
· V ·

{

Φf
n

}

(10d)

Now one can use for acoustic mode shapes the volume-normalised scaling-scheme. Equation (10) becomes:

αn =

√

√

√

√

−2 · ∆ωn

ωn ·
(

∑Nc

i=1
Ψf 2

i,n · ∆Vi

) (11)

From (11) one can conclude that one now needs to add or subtract some volume instead of some local mass. Doing this
and measuring the frequency shift of the resonance frequencies one is able to calculate the scaling factors of the acoustic
mode shapes. Note that the second measurement is only neededto estimate the frequency shift and that no mode shape
values are needed. So it isn’t necessary to measure in all thepoints! Note also that with this technique it is possible to
calculate the FRF’s but without using a volumetric acceleration sound source. In the next section some simulations and
experiments will validate this technique.

3 Vibro-acoustic experiment

3.1 Vibro-acoustic set-up and results of first analysis

The structure used for the experiments was a box of dimensions 1.24 × 0.36 × 0.30 m. Five surfaces of the box
were made of wood while the sixth surface was an aluminium plate (3 mm). The front of the structure has been excited
by a pneumatic jet. The vibrations of the aluminium plate were measured by a scanning laser vibrometer (PSV-300
Polytec). An accelerometer was used to measure the reference signal. Finally, the acoustical grid consisted of 40 points.
A Maximum Likelihood Estimator was used to calculate the modal parameters. An overview of the natural frequencies is

 

(a) Outside

 

(b) Inside (c) Measurement grid

Figure 1: Experimental setup

given in Table 2.
The estimated mode shapes show clearly that some modes are linked to the acoustical part of the system while other

modes are the result of the vibrating plate. For instance, the mode found at 382 Hz is obviously a vibration mode (see
Figure 2) while the mode at 278 Hz is an acoustic mode (see Figure 2). Some modes are clearly coupled modes, for
example, the modes at 132 Hz, 148 Hz and 573 Hz (see Figure 2).



Table 2: Natural frequencies of the modes

Mode Natural frequency found by output-only
measurements (Hz)

1 131.6
2 148.1
3 277.5
4 299.6
5 381.8
6 423.4
7 474.1
8 499.5
9 542.5
10 550.2
11 564.0
12 573.2

3.2 Structural sensitivity analysis and results of second analysis

To estimate the scaled vibration mode shapes we added some mass and performed a second measurement. Using
equation (9) we then found the mass-normalised mode shapes.In this experiment a mass of10.24 × 10−3kg was added
at the front of the plate at the same location of the accelerometer, which was placed inside the structure.

The results can be found in Table 3. In this table we compared the estimated mode shape values in one point with
the mode shape values which resulted from a classical structural modal analysis. The results confirmed that SOMA is an
alternative to classical experimental modal analysis. In this experiment it turned out that the vibration modes and coupled
acoustic modes could be scaled with an error smaller than 8 %.

Table 3: Results of the structural scaling procedure

Mode mode frequencyω (Hz) ∆ω (Hz) normalised mode shape
(structural operational

modal analysis)

normalised mode shape
(experimental modal

analysis)

error (%)

1 132.2 0.179 0.514 0.478 7.7
2 147.9 0.522 0.820 0.827 0.9
4 300.5 1.704 1.052 1.016 3.4
5 382.4 4.679 1.546 1.593 3.0

It is important to note that one has to consider which mass to use. A small mass will lead to very small shifts in
frequency while heavy masses will induce important prediction errors since the first order approximation is only valid for
small changes. Note that heavy masses also will change the stiffness (in theory the mass has to be located in a single
point). During the experiment the mass led to a frequency shift of 0.18 Hz for the 132 Hz mode. This is to small in
comparison with the estimation error. So it isn’t surprising that the error of the calculated scaling factor is approximately
8 %. In fact different masses should be used for different frequency bands.

Another important remark follows from the observation thatuncoupled acoustic modes (e.g. the mode of 278 Hz)
cannot be rescaled by altering the structural system. To findthe correctly scaled mode shapes we have to alter the acoustic
system (by local volume changes).

3.3 Acoustic sensitivity analysis and results of third analysis

To estimate the scaled acoustic mode shape at 278 Hz we added some volume (1.5 × 10−3m3) and performed a new
measurement. The result of the rescaling is shown in Table 4.In this case the volume-normalised mode shapes were
compared to the results of a FEM-analysis. the results confirmed that AOMA is an alternative to classical experimental
acoustic modal analysis. In this experiment it turned out that the acoustic modes could be scaled with an error smaller
than 2 %.

4 Conclusions

In this paper, it was shown that for vibro-acoustic analysisoperational modal analysis is an alternative to classical
modal analysis. The vibration, acoustic and combined modescan be rescaled using the specific methods. For vibration
modes, rescaling is done by a sensitivity analysis which is based on altering the structural system by local masses whilefor
acoustic modes it is based on changing the volume of the cavity. Some experiments showed that the errors are negligible
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Figure 2: Modes between 0 Hz and 600 Hz

compared to the advantages. These advantages of OMA are thatthe real boundary conditions are present and that one
doesn’t need any known sources (e.g. volume acceleration sound sources).
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Table 4: Results of the acoustic scaling procedure

Mode mode frequencyω (Hz) ∆ω (Hz) normalised mode shape
(acoustic operational

modal analysis)

normalised mode shape
(FEM)

error (%)

3 276.6 2.92 3.75 3.86 2.9
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