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Abstract. This paper addresses the situation in which some form of damage is induced by cyclic mechanical stresses 
yielded by the vibratory motion of a system whose dynamical behaviour is, in turn, affected by the evolution of the 
damage. It is assumed that both phenomena, vibration and damage propagation, can be modeled by means of time 
depended motion equations whose coupled solution is sought. A brief discussion about the damage tolerant design 
philosophy for aircraft structures is presented at the introduction, emphasizing the importance of the accurate 
definition of inspection intervals and, for this sake, the need of a representative damage propagation model accounting 
for the actual loading environment in which a structure may operate. For the purpose of illustration, the finite element 
model of a cantilever beam is formulated, providing that the stiffness matrix can be updated as long as a crack of an 
assumed initial length spreads in a given location of the beam according to a proper propagation model. This way, it is 
possible to track how the mechanical vibration, through its varying amplitude stress field, activates and develops the 
fatigue failure mechanism. Conversely, it is also possible to address how the effect of the fatigue induced stiffness 
degradation influences the motion of the beam, closing the loop for the analysis of a coupled vibration-degradation 
dynamical phenomenon. In the possession of this working model, stochastic simulation of the beam behaviour is 
developed, aiming at the identification of the most influential parameters and at the characterization of the probability 
distributions of the relevant responses of interest. The knowledge of the parameters and responses allows for the 
formulation of optimization problems aiming at the improvement of the beam robustness with respect to the fatigue 
induced stiffness degradation. The overall results are presented and analyzed, conducting to the conclusions and 
outline of future investigation. 
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1. Introduction  
 

Aircraft are suitable representatives of a class of machinery supposed to operate for long service lives, economically 
delivering high levels of performance and enduring all kinds of adverse environments. In such circumstances, safety 
becomes the paramount design driver and the safety assurance for aging aircraft a major concern since the onset of the 
design development. 

For modern aircraft, this concern is addressed by a set of measures aimed at resulting in damage tolerant designs. 
This means that all effort is expended to avoid the failure of any component but, even if such an unlikely event occurs, 
it is not sufficient to trigger hazardous failures. 

The achievement of damage tolerance is possible due to a multidisciplinary approach, involving, among several 
issues, the identification of damage sources (environmental deterioration, accidental and fatigue damage), their 
evaluation and the estimation of their effects (loads, stresses, detail design, analysis and testing).  

The aspects of aircraft manufacturing (parts production, assembly and quality control) and operation are deeply and 
extensively considered in this framework. Regarded in the broad sense, operation encompasses, besides the normal 
usage, the in-service introduction of structural modifications and repairs, the control and prevention of corrosion, the 
monitoring of widespread cracking and the definition of a comprehensive structural maintenance program. 

The highlights of the structural maintenance plan are the major structural checks (when the aircraft are withdrawn 
from regular service and largely disassembled to replace the structural components that have reached their predicted 
useful lives regardless of their apparent integrity) and the periodic inspections (usually performed during normal 
operation or short stops) aimed at detecting incipient damage. Future design directions indicate that on-line structural 
health monitoring devices shall become an improvement by collecting vital information even during flight. 

In order to establish the correct inspection intervals for each structural segment, aircraft developers must evaluate, 
since the design phase, how degradation damage shall evolve over time. For this purpose, a set of supposed damage 
scenarios is defined and the time frame in which they assume pre-defined risk levels is estimated. The structural 
maintenance plan is then formulated as to include inspections before some kind of damage can offer a significant risk.  

It becomes evident that the accuracy of the estimates for the proper inspection intervals largely depends on the 
quality of the tools available to model and appraise how a given damage scenario should evolve. This work intends to 
present a contribution for the estimation of damage evolution in components subject to vibratory motion produced by 
dynamic loading. 



 2. Basic formulation of the coupled vibration-degradation problem 
 

Temporal variations of the stress field and/or environmental conditions can cause irreversible changes in the 
characteristics of structural/mechanical systems, with the potential of significantly affecting their performance. These 
changes, referred to as degrading (or deterioration) phenomena, are usually not taken into account in the analysis of 
vibratory systems as an isolated discipline. Such analysis concentrates on the characterization of the response under 
various excitations assuming that the systems properties are fixed (Sobczyk and Trebicki, 2000). 

On the other hand, formulations dedicated to damage (mainly crack) propagation usually do not focus on the time 
dependency inherent to the oscillatory stress fields that occur due to dynamic motion. 

Most important, the time evolution of each of these phenomena can be affected by the other, so that there is a mutual 
coupling between them. This means that the vibration motion, by inducing a varying amplitude stress field, activates 
and develops the fatigue failure mechanism. Conversely, the fatigue induced stiffness degradation influences the motion 
of the beam, closing the loop of a coupled vibration-degradation dynamical phenomenon. 

In general, the coupled response-degradation problem for vibratory systems can be formulated as in Eqs. (1) to (3): 
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The motion response x depends on all forcing sources, including the time varying damage D(t). The coupled 

vibration-degradation process Q equilibrates the states of motion and damage, given their respective state variables 
( ) ( )txtx &,  and ( ) ( )tDtD &, , besides the initial states 0x  and 0D . 

Each one of the processes referenced by Eqs. (1) to (3) is briefly examined in sections 3 (for vibratory motion) and 4 
(for crack propagation). A working model for their coupling is then developed in section 5 and the remainder of the 
paper is devoted to applications and analysis. 
 
3. Outline of vibration analysis for design engineering  
 

The analysis of mechanical vibrations for the purpose of design engineering can be performed considering three 
major steps: 

 
3.1. Formulation of the motion equations 
 

This task is accomplished by applying fundamental mechanical laws to describe the system being analyzed in terms 
of its state of equilibrium. In the Newtonian approach, Eqs. (4) and (5) are prescribed so that the vector sum of all time 
dependent forces ( )tF

r
 and moments ( )tM

r
 equals zero: 
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for all of the i coordinates necessary and sufficient to completely and uniquely describe the motion of the system (i.e., 
its degrees-of-freedom). These forces and moments can be proportional to the system accelerations (inertia terms), 
velocities (dissipative terms) or displacements (stiffness terms). 

On the other hand, the exchange of kinetic (T) and elastic (U) energy in a dissipative system (subject to the energy 
dissipation law R) can be considered through the variational formulation expressed in Eq. (6), known as the Lagrange 
Equation: 
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The partial derivatives are taken with respect to the generalized coordinates q (linear and/or angular displacements) 

or their time derivatives q& (i.e., velocities) associated to the i degrees-of freedom of the system. The total derivative 



 
( ) dtd ⋅ is taken with respect to time and the right hand term is the vector of external forces and/or moments, that is, the 

generalized forces. 
Either of these approaches conducts to a system containing i differential equations of motion, represented in matrix 

form by Eq. (7): 
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where [M], [C] and [K] represent the inertia, damping and stiffness matrices associated to the accelerations ( ( )tx&& ), 

velocities ( ( )tx& ) and displacements ( ( )tx ) respectively. The movement is induced by the action of the time varying 
external forces expressed by means of the vector {f(t)}. In the context of this paper, an important part of these forces 
appears due to stiffness changes promoted by the spread of some degradation agent (i.e., fatigue induced cracks). 
 
3.2. Solution of the motion equations 
 

Although analytical solutions are available for Eq. (7), their implementation is often impractical, and numerical 
methods are employed to obtain approximate solutions, with satisfactory accuracy from the engineering viewpoint. A 
complete and throughout discussion about such solution methods is provided by Craig (1981). 
 
3.3. Comparison of the system dynamics with the excitation 
 

Regardless of the method, the solution of the motion equations ultimately reveals how the system shall behave in the 
presence of a given excitation. Thus, the kinetic field of the system (its displacement, velocities and accelerations) can 
be expressed as a function of time or its reciprocal: the frequency. 

Indeed, the Frequency Response Function is widely used as an engineering tool for the purpose of vibration 
analysis. By means of its graphical representation, as in Fig. 1, it is possible to infer about the dynamic behaviour of the 
system considering a range of possible excitation frequencies: 

 

 
 

Figure 1. Typical frequency response function for vibration analysis 
 
It should be stressed that this inherent dynamic response may be continuously changed along time if a damage 

phenomenon occurs simultaneously to the vibratory movement. 
 

4. Review of degradation (crack propagation) modeling 
 

The oscillatory motion associated with vibration phenomena results in time dependent displacement and, 
consequently, stress fields. Stresses that vary in magnitude and even signal (alternating between tension and 
compression) build up a scenario that is prone to the appearance of fatigue degradation. The stress variation can be 
accounted for by means of the stress ratio R, that is, the quotient of the minimum by the maximum stress. 

As to quantify this phenomenon along time, the basic quantity to be determined is the rate of change of the fatigue 
crack size (a) with time. In aircraft operation, time measurement for durability assessment is performed in terms of the 



number of load cycles or, in the context of this paper, vibration oscillations. Therefore, the dependence of crack size 
with respect to operating cycles (N) can be expressed as shown in Eq. (8): 

 

    ( )MGf
dN
da ,,σ=  

 
(8) 

 
where the functional dependence is specified with respect to the stress field (σ), the geometry (G) and the material 
properties (M). 

Several theories have been developed in order to establish a mathematical form to this law (Dowling, 1998). 
Equation (9) displays the so-called Paris law, which is indeed a set of equations, each one for a given value of the stress 
ratio R: 

 

    ( )mKc
dN
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∆⋅=  
 

(9) 

 
The geometric shape and the material properties are considered through c and m respectively, while the stress 

intensity factor ∆K, given in Eq. (10), indicates the relation between the crack size and the variation in the stress 
intensity. The correction factor β is determined empirically and the constant pi (π) is approximately equal to 3.1416.   

 

    ( ) aK ⋅⋅∆⋅=∆ πσβ   
(10) 

 
5. Formulation, results and performance of coupled vibration-degradation model 
 
5.1. Formulation 
 

The dynamics of a cantilever beam is determined by means of the finite element method. The general beam element 
of length L subject to in-plane transversal loading is depicted in Fig. 2 (Buchanan, 1994; Lalanne at al., 1984): 

 

 
 

Figure 2. General beam element subject to in-plane transversal loading 
  
Considering the translational (ν) and rotational (φ) degrees-of-freedom at both ends 1 and 2, and applying either 

Eqs. (4) and (5) or Eq. (6), the stiffness and consistent mass matrices (Lalanne et al., 1984) assume the forms indicated 
by Eqs. (11) and (12) respectively. The beam is assumed to be undamped. 
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(12) 

 
Each element is considered to be built of a material with modulus of elasticity E and density ρ. The elemental cross 

section has area S and static inertia I. If the beam discretization is implemented using three elements, the application of  
the proper boundary conditions and the assembly of the individual elemental matrices by means of the connecting 
degrees-of-freedom result in the complete stiffness and consistent mass matrices as in Eqs. (13) and (14): 
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(14) 

 
Besides the finite element modeling of the vibration motion, a discrete version  (Chou et al., 2004) of the Paris law 

(for j oscillations) is implemented as shown in Eq. (15), so that the time dependent vibratory motion and crack 
propagation can be coupled together, according to the scheme depicted in Fig. 3. 
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Figure 3. Flowchart of numerical scheme to couple the vibration and degradation phenomena 
 

5.2. Results and performance 
 
Initially, the working model described in section 5.1 is used considering a cantilever beam 0.30 m long, whose 

rectangular cross section measures 0.01m and 0.02 m for the base (b) and the height (h) respectively. The material is 
aluminum, with elasticity modulus equal to 7.1020 x 1010 N/m2 and weight density equal to 28600.00 N/m3. With these 
characteristics, the fundamental vibrating frequency of the beam is 11.21 Hz considering its intact state.  

Under the action of a dynamic force with 5.00 N in magnitude, alternating at 5.00 Hz (about half of the fundamental 
frequency) and located at the beam tip, a crack of initial length equal to 0.50 x 10-3 m is supposed to arise near to the 
clamped end, since this is the region subject to the maximum bending moment. This flaw is accounted for by a 
reduction in the beam height, equivalent to the crack length at each time instant. 



The graphs presented in Figs. 4, 5 and 6 provide some insight about the effect of the growth of this crack over the 
system dynamics and vice-versa. 

 

 
 

Figure 4. Crack propagation along load cycles 
 

 
 

Figure 5. Fundamental frequency decay with crack propagation 
 

 
 

Figure 6. Relation between fundamental frequency and crack size during degradation spread 



 
Figures 4 and 5 complement each other in the sense that the stiffness loss mechanism along the loading cycles is 

highlighted. While the crack grows, as shown in Fig. 4, the fundamental vibrating frequency of the beam decays, 
according to Fig. 5. 

Both phenomena are highly non-linear with respect to the load cycles, especially when the crack reaches its critical 
size and becomes unstable. At this point, the stress level at the remaining (non-cracked) material is enough to promote a 
failure, which is preceded by abrupt changes both in crack growth and vibrating frequency decrease. 

Also some insight is provided about the proportions of the rates of change of the relevant physical quantities with 
the spread of the degradation. At about 150 load cycles, a sudden change occurs to both the crack size and the natural 
frequency values, heralding the failure. From the beginning of the oscillatory loading up to this point, the crack 
increases from 0.5 x 10-3 m to 2.0 x 10-3 m, a 300.00% variation. In this same interim, the fundamental frequency drops 
from 11.21 Hz to 9.74 Hz, representing a 13.11% change. Therefore, up to the crack critical size, the value of the 
fundamental vibrating frequency is much less sensitive to the degradation than the crack growth itself but, from the 
unstable crack size and on, the rates of change of these two quantities develop at the same (sudden) pace. 

The important aspect contained in Fig. 6 is that these two symptoms of the degradation phenomenon (crack growth 
and frequency decay) can be linearly related to each other. This feature may be very convenient as to build analytical or 
empirical models for the study of the coupled vibration-degradation process. For example, one can measure the 
variation on the fundamental frequency and accurately relate it to estimates of crack sizes by means of a simple linear 
relationship. The frequency measurement usually poses less experimental difficulties and costs than the direct 
evaluation of the crack size, mainly when there are access obstacles to the structural component of interest. However, as 
pointed out in the previous paragraph, the sensitivity of the natural frequency with respect to the damage accumulation 
is considerably lower than that of the crack growth rate itself, which results in practical difficulties to monitor the crack 
growth by means of the frequency decay, specially for large structural components presenting mild damage. Therefore, 
the main purpose of the working model developed herein is, as stated in sections 1 and 2, to improve life predictions 
when the actual loading acting over the structure is dynamic. Further applications are proposed in sections 6 and 7. 

 
6. Stochastic simulation 
 

With the availability of a working model such as that described in section 5, further types of engineering analysis 
can be developed. One shall consider, for instance, that in the construction of an aircraft there is a very stringent quality 
control effort, so that variations in material properties and physical dimensions are driven to a minimum and, when they 
occur, they are quantified and recorded. The central tendency and dispersion metrics contained in such databases can be 
used in order to estimate the effect of dimensional and material variations on the behaviour of a damaged cantilever 
beam subject to dynamic loading. 

Assuming a conservative approach, the dispersion levels used in this work, measured in terms of standard deviations 
from the mean value, are significantly higher than the usual. Besides, they are fitted into a log-Normal probability 
distribution (Nelson, 1995; Ross, 1970), in which most of the observations fall below the average. 

Another variability source refers to the loading environment itself. In this case, conservatism is achieved through a 
rationale opposed to that of the log-Normal distribution, that is, the majority of the values shall be concentrated above 
the average. For this purpose, a Beta probability distribution with the first shape parameter larger than the second one 
(Evans et al., 2000) is chosen. 

Taking these aspects into account, a total of 20 runs is performed within a stochastic simulation with the 
simultaneous variation of material, cross section dimensions and load magnitude. Among the many results that can be 
obtained, this section focuses on the number of load cycles in which the failure occurs for each of the stochastic 
scenarios. Thus, a time-to-failure (TTF) data set is generated and a Weibull probability analysis (Rao, 1992) is 
performed as shown in Tab. 1. 

The observed times-to-failure are ranked in ascending order from 1 to n (n = 20, the number of runs within the 
stochastic simulation). For each of the ranks, the median ranks (MeR) are calculated and then transformed (TMeR), 
according to Eqs. (16) and (17): 
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where ln(.) stands for the natural logarithm, which is also applied to the time-to-failure figures. 

Considering the natural logarithms of the ranked time-to-failure figures as the independent variable X and the TMeR 
as the dependent variable Y in a regression analysis (Khury and Cornell, 1987), Eq. (18) results: 

 
    ( ) TMeRTTF ⋅+= ηµln  (18) 

 



Table 1. Weibull analysis of the time-to-failure data from the stochastic simulation of the damaged vibrating beam. 
Stochastic 
Simulation 

Run 

Time-to-
Failure 

Ranked Time-to-
Failure 

Natural Logarithm 
of Ranked Time-to-

Failure (X) 

Rank Median Rank Transformed 
Median Rank 

(Y) 
1 72 60 4,094344562 1 0,034313725 -3,354802509 
2 82 63 4,158883083 2 0,083333333 -2,441716399 
3 72 72 4,219507705 3 0,132352941 -1,952137671 
4 86 72 4,262679877 4 0,181372549 -1,608807204 
5 78 73 4,33073334 5 0,230392157 -1,339891087 
6 228 73 4,369447852 6 0,279411765 -1,115695152 
7 82 75 4,430816799 7 0,328431373 -0,920953918 
8 204 76 4,49980967 8 0,37745098 -0,746689513 
9 342 77 4,564348191 9 0,426470588 -0,587084006 

10 144 78 4,663439094 10 0,475490196 -0,438053654 
11 242 82 4,744932128 11 0,524509804 -0,296508894 
12 75 82 4,770684624 12 0,573529412 -0,159920103 
13 73 86 4,820281566 13 0,62254902 -0,026021058 
14 73 91 4,86753445 14 0,671568627 0,107442983 
15 176 144 4,9698133 15 0,720588235 0,24300008 
16 60 176 5,170483995 16 0,769607843 0,383882124 
17 77 204 5,318119994 17 0,818627451 0,534855821 
18 63 228 5,429345629 18 0,867647059 0,704227134 
19 91 242 5,488937726 19 0,916666667 0,910235093 
20 76 342 5,834810737 20 0,965686275 1,21556827 

 
The slope η of this straight line equation is the shape parameter of the Weibull probability distribution. Its statistical 

interpretation is given in Tab 2 (Lafraia, 2001): 
 

Table 2. Statistical interpretation of the Weibull shape parameter. 
Shape Parameter Value Interpretation 

< 1 The failure rate decays with time. Usually, this happens in the 
beginning of a system operation, where parts have to adapt to 

each other as to function properly 
1 The failure rate is a random constant because the system 

operates in a steady state. The Weibull distribution assumes the 
form of one of its special cases, the Exponential distribution 

> 1 The failure rate increases with time. Usually this happens at the 
end of the useful service life, known as “burn-out” phase 

 
Besides the shape parameter, the intercept µ is related to the characteristic life (Lc), equivalent to the time at which 

the 63rd percentile of the population involved in a stochastic process is expected to experience failure. From η and µ, the 
characteristic life can be calculated as stated in Eq. (19): 
 

    η
µ

−
= eLc  

 
(18) 

 
For the case of the stochastic simulation data in Tab. 1, the straight line fit has a squared correlation coefficient of 

85.07 %, a high value that supports the assumption of Weibull distributed failure probabilities. Furthermore, the slope 
and intercept equal 2.20 and -11.01 respectively, which yields a characteristic life of 148 load cycles. Indeed, inspection 
of Tab. 1 reveals that 15 in 20 (i.e., 75%) of the population failed up to this characteristic life. The deviation from the 
theoretical percentile is equal to 19.04% and can be largely explained by the 14.93% (100.00% - 85.07%) lack of fit, 
besides the relatively small population size (n=20). 

 Moreover, the 2.20 shape parameter indicates that the conservative environment set-up for the stochastic simulation 
resulted in a “burn-out” type of operation. 
 
7. Optimization 
 

Design optimization techniques consist a mature tool for engineering (Vanderplaats, 2004). For their successful 
application, an analysis model and/or databases are required. In the present case, the analysis model developed in 
section 5 is employed to generate a database for the construction of response surfaces (Khury and Cornell, 1987) to be 



 
used within an optimization procedure involving the foremost quantities of a coupled vibration-degradation 
phenomenon. 

Actually, certain ranges around the original values of beam length (3xL), cross section width (b) and cross section 
height (h) will be explored as to maximize the characteristic life and minimize the shape parameter (in order to relieve 
the failure acceleration rate or “burn-out”), while imposing constraints over the weight  of the beam (no greater than 
10.00% above of the original value) and over its fundamental frequency for the intact condition (above 10.00 Hz, which 
can be considered far enough from the excitation frequency of 5.00 Hz).  

Given the three design variables L, b and h, a central composite design is defined for them as in Tab. 3: 
 

Table 3. Central composite experimental design for response surface based optimization 
Run L (m) b (m) h (m) Lc η Weight (N) Fundamental Frequency - ωn1 (Hz) 

1 0.2700 0.0090 0.0180 145.00 2.22 1.250964 13.8761194 
2 0.2700 0.0090 0.0220 179.00 2.02 1.528956 16.9597015 
3 0.2700 0.0110 0.0180 175.00 2.04 1.528956 13.8761194 
4 0.2700 0.0110 0.0220 189.00 1.88 1.868724 16.9597015 
5 0.3300 0.0090 0.0180 152.00 2.11 1.528956 9.28897249 
6 0.3300 0.0090 0.0220 141.00 2.26 1.868724 11.3531886 
7 0.3300 0.0110 0.0180 126.00 2.33 1.868724 9.28897249 
8 0.3300 0.0110 0.0220 153.00 2.11 2.283996 11.3531886 
9 0.2495 0.0100 0.0200 160.00 2.07 1.427404 18.0489139 

10 0.3505 0.0100 0.0200 130.00 2.28 2.004596 9.15148427 
11 0.3000 0.0083 0.0200 150.00 2.16 1.427404 12.4885075 
12 0.3000 0.0117 0.0200 154.00 2.10 2.004596 12.4885075 
13 0.3000 0.0100 0.0166 122.00 2.37 1.427404 10.3881992 
14 0.3000 0.0100 0.0234 204.00 1.71 2.004596 14.5888157 
15 0.3000 0.0100 0.0200 148.00 2.20 1.716000 11.2100000 
16 0.3000 0.0100 0.0200 148.00 2.20 1.716000 11.2100000 

 
yielding the response surface models shown in Eqs. (19) to (22), already considering only the 95.00% significant terms: 
 
    hLLc ⋅+⋅−= 5686.293766.246292.147  (19) 
 
    h⋅−= 225525.019899.2η  (20) 
 
 

{ }hbhLbLhbLWeight ⋅+⋅+⋅+++⋅+= 3432.0716.1  
 

(21) 

 
    

hLhhbLLn ⋅⋅−⋅+⋅+⋅+⋅+⋅−= 50968.086229.0544234.286229.064838.117703.521865.11 222
1ω  (22) 

 
An inspection of the signals and relative values of the coefficients demonstrate that these response surface models 

are consistent from the physical viewpoint. Besides, the less accurate of them has a squared multiple correlation 
coefficient of 78.5%, and the best one has above 99.00% of explained variance. Therefore, their predictive capabilities 
can be trusted for the sake of the two proposed optimization procedures. The resulting percent variations in the 
responses of interest are shown in Tab. 4, along with the corresponding optimum design variables values: 
 

Table 4. Design optimization results, from response surface estimates 
Design 

Problem 
L (m) b 

(m) 
h (m) Lc η Weight (N) Fundamental Frequency - ωn1 (Hz)

1 0.249546 0.01 0.023364 +1.94% -0.035% -0.08% +2.27% 
2 0.3 0.01 0.023364 +0.07% +0.035% +0.08% +0.08% 

 
All these optima are feasible, in spite of the stringent constraints imposed in both formulations. In the first case, the 

characteristic life is improved in 1.94%. This is a very significant improvement obtained for a response that depends 
upon a large number of parameters and is evaluated in the midst of a stochastic simulation. In terms of the operation of 
aircraft designed to undergo tens of thousands flights, such an improvement certainly represents a substantial economy.  

The reduction of the failure rate acceleration factor (Weibull shape parameter η) resulted to be much less successful, 
which can be credited to severity of the “burn-out” setup created in the framework of the stochastic simulation, against 
which it is difficult to obtain a result design. 

It should be noted that with the power of optimization techniques and the flexibility of the response surface method, 
several optimization procedures can be formulated and solved at low cost, enabling the achievement of design gains 
with respect to many of the criteria assessed by means of the working model developed in section 5.  



8. Analysis, conclusions and outline of future research work 
 

This paper has highlighted the importance of the damage tolerant design philosophy to ensure structural safety for 
aircraft operation, and proposed a means of improving life estimates for damaged (cracked) components that undergo 
dynamic loading. 

A coupled vibration-degradation problem has been stated and a working model for its solution has been proposed. 
This model could be used to obtain insight about the vibration-degradation phenomenon, as well as to perform 
reliability based optimization procedures. 

Among the many existing possibilities, future research effort shall concentrate on exploring the behaviour of the 
coupled vibration-degradation problem encompassing more aspects of its dynamics, such as: 

 
• The example shown in this work does not specify any damping for the cantilever beam. Is it possible to determine 

if there is any relation between the system structural damping and the crack propagation?  
• The excitation frequency of 5.00 Hz is lower than the fundamental vibrating frequency, meaning that the motion of 

the beam is primarily driven by the (first modal) stiffness. What would happen in higher frequencies, with the 
influence of higher order vibrating modes? 

• The effect of non-linear modeling for the vibratory motion shall be investigated. 
• Besides the variation in the load magnitude, a comprehensive random vibrations study could be implemented 

within the stochastic simulation framework. 
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