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Abstract. This work is a continuation of an effort of developing a methodology for the aeroelastic analysis of
two-dimensional lifiting surfaces using an unsteady, Euler-based, CFD tool for the calculation of the aerodynamic
operator. The CFD tool solves the flow problem with the finite-volume method applied in an unstructured
grid context. Details on space discretization and time stepping scheme are discussed and references to further
details on artificial dissipation modeling and convergence acceleration techniques, available for the steady-case
situations, are cited. The computational mesh is obtained with the commercial generation tool ICEM CFD c©.
The proposed methodology is based on the determination of the aerodynamic operator with the transfer function
technique, which is given, in the frequency domain, by the analysis of the system’s response to an exponentially-
shaped pulse in the time domain. The response in the frequency domain is achieved with the Fast Fourier
Transform (FFT) technique available in any mathematical manipulation tool, such as Matlab c©. Some numerical
experiments are performed involving unsteady transonic and subsonic flows around a NACA 0012 airfoil and
the results are presented as curves of aerodynamic generalized forces. The unsteady simulations start from
a converged steady state solution obtained by the same CFD tool. These unsteady results are compared with
available data in the literature. The respective Fourier transforms are also determined.
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1 Introduction

Aeroelasticity can be defined as the science which studies the mutual interaction between aerodynamic and
dynamic forces. However, a broader definition is possible when inertial forces are also focused. The analysis of
dynamics characteristics of either complex or simple structures are quite developed nowadays as far as numerical
and experimental methods are concerned. Hence, it is correct to state that reliability in aeroelastic calculations
is strongly dependent to the correct evaluation of the aerodynamic operator.

Traditionally, the methods developed for determining the aerodynamic operator for subsonic and supersonic
regimes are based on linearized formulations which do not present the same satisfactory results in the transonic
range. According to Tijdeman (1977), this occurs due to the nonlinearity of transonic flows caracterizing a
significative alteration of the flow behavior, even when a profile is submited to small pertubations. Thus being,
the methodology here presented, which is based on the ideas of Raush, Batina and Yang (1990), intends to
obtain the aerodynamic operator for two- dimensional lifting surfaces employing modern CFD techniques.

Computational Fluid Dynamics (CFD) is a subject that has played an extremely important role in recent
aerodynamics studies. The possibility of treating numerically a broad range of phenomena which occur in flows
over bodies of practically any geometry has inumerous advantages over experimental determinations, such as
greater flexibility together with time and financial resources savings.

However, obtaining more reliable numerical results for a growing number of situations has been one of the
major recent challenges in many science fields. Fletcher (1988a) and Hirsch (1994) show that particulary in
aerodynamics, the general phenomena are governed by the Navier-Stokes equations, which constitute a system
of coupled nonlinear partial differential equations that has no general analytical solution and that is of difficult
algebraic manipulation. Hirsch (1994) coments, among other issues concerning CFD techniques, on how to
simplify the mathematical models conveniently in order to ease the numerical treatment of each case. A survey
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on this subject is also noted by Azevedo (1990). Space and time discretization schemes, as well as convergence
acceleration techniques, boundary condition estabilishment and other numerical integration tools are available
and largely used in order to solve such models.

After selection of the theoretical model, it is indispensable to define the physical domain where the flows
take place, determining the boundary conditions. This solution approach demands the discrete representation
of the physical domain to make the problems numerically coherent defining a computational mesh of points or
regions where the calculations are performed. The mesh generation, as it is vastly documented in the literature,
i.g. Fletcher (1988b), and verified by the CTA/IAE work group’s own experience, is extremely important
and decisive in the accuracy and convergence of the solution. The mesh kind is also an essential factor on
the CFD tool behavior. Structured meshes have the advantage of being well-behaved, the existence of an
intrinsic correspondence between adjacent nodes and a very good control over grid refinement through stretching
functions. They are widely employed together with finite difference codes due to its nature when neighbor nodes
relations are concerned, although there are no restrictions on their use with other methods. However, this sort of
mesh do not adpat readily to complicated geometries, requiring the adoption of sophisticated multiblock mesh
techniques. On the other hand, unstructures meshes are extremely flexible when it comes to geometric forms
and they allow the use of interesting techniques such as adaptative refinement. The way the neighbor cells and
conectivity data is arranged in this sort of mesh leads naturally to its use together with finite volume methods.
However, as in the structured case, there are no restrictions to its employment with other formulations.

As stated by Marques (2004), together with the evolution of the work and projects performed by CTA/IAE,
the demand for aerodynamic parameters has swelled, mainly those concerning the vehicles developed in this
center. Nevertheless, the application of CFD tools in these parameter analyses has always been limited by
the need of adequated code development and the lack of computational resources compatible with the work
to be performed. Therefore, a progressive approach has been adopted in the development of CFD tools in
CTA/IAE and in ITA, as presented by Azevedo (1990), Azevedo, Fico and Ortega(1995), Fico and Azevdo
(1994), Azevedo, Strauss and Ferrari (1997), Bigarelli, Mello and Azevdo (1999), Bigarelli and Azevedo (2002),
Oliveira (1993), Simões and Azevedo (1999).

The present work is based on the finite volume formulation, where a CFD tool is applied with unstructured
bidimensional meshes around lifting surfaces to acquire nonstationary responses to harmonic and impulsed
motions. These time-domain responses supply the generalized aerodynamic forces necessary as input to the
aeroelastic model. The methodology here presented intends to obtain frequency-domain responses from the
solutions to impulsed motion and, with that information, determine the aeroelastic stability margin with a
single expensive CFD run.

2 Aerodynamic Theoretical Formulation

The CFD tool applied in this work is based on the Euler equations for the two-dimensional case. Due to
the use of unstructured meshes and the adoption of the finite volume approach, these equations were used in
the Cartesian form. Besides, as usual in CFD applications, flux vectors are employed and the equations are
nondimensionalized. Hence, they can be written as

∂

∂t

∫ ∫

V

Qdxdy +
∫

S

(Edy + Fdx) = 0. (1)

In Eq. (1), V represents the volume of the control volume or, more precisely, its area in the two-imensional
case. S is its surface, or its side edges in 2-D. Q is the vector of conserved properties, given by

Q =
{

ρ ρu ρv e
}T . (2)

E and F are the flux vectors in the x and y directions, respectively, defined as

E =





ρU
ρuU + p

ρvU
(e + p)U + xtp





, F =





ρV
ρuV

ρvV + p
(e + p)V + ytp





. (3)

The nomenclature adopted here is the usual in CFD: ρ is the density, u and v are the Cartesian velocity
components and e is the total energy per unity of volume. The pressure (p) is given by the perfect gas equation,
written as

p = (γ − 1)
[
e− 1

2
ρ

(
u2 + v2

)]
. (4)



Once again, as usual, γ represents the ratio of specific heats. The contravariant velocity components (U and
V ) are determined by

U = u− xt an V = v − yt, (5)

where xt and yt are the Cartesian components of the mesh velocity in the nonstationary case. For further details
on the theoretical formulation, such as boundary and initial conditions, please refer to Marques (2004).

3 Numerical Formulation

The algorithm presented here is based on a cell-centered finite volume scheme in which the stored information
is actually the variable avarage value throughout the entire control volume. These mean values are defined as

Qi =
1
Vi

∫ ∫

Vi

Qdxdy. (6)

Equation (1) can, then, be rewritten for each i− th cell as

∂

∂t
(ViQi) +

∫

Si

(Edy − Fdx) = 0. (7)

The remaining integration in Eq. (7) represents the flux of the vector quantities E and F through each control
volume’s boundary. This code was developed to be used with unstructured meshes composed of triangles. The
flux, however, can be evaluated as the sum of the flux contributions of each edge, which is obtained approximately
from the average with the neighbors conserved quantities, as proposed by Jameson and Mavriplis (1986). Hence,
a convective operator is defined and it is given by

∫

Si

(Edy − Fdx) ≈ C (Qi) = (8)

3∑

k=1

[E (Qik) (yk2 − yk1)− F (Qik) (xk2 − xk1)] , (9)

where

Qik =
1
2

(Qi + Qk) , (10)

and the (xk1 , yk1) and (xk2 , yk2) coordinates are relative to the vertices which define the interface between the
cells.

The Euler equations are a set of nondissipative hyperbolic conservation laws. Hence, as given by Pulliam
(1986), their numerical treatment requires an inherently dissipative discretization scheme or the introduction of
artificial dissipation terms in order to avoid oscillations near shock waves and to damp high frequency uncoupled
error modes. Azevedo and Oliveira (1993) state that the flux evaluation method adopted in the present CFD tool
is analogous to a centered difference scheme in finite difference formulation. In this case, Pulliam (1986) shows
that there is the necessity of adding artifitial dissipacion terms. Details on the adopted artificial dissipation
scheme are given in Marques (2004).

The numerical solution is advanced in time using a second-order accurate, 5-stage, explicit, hybrid scheme
which evolved from the consideration of Runge-Kutta time stepping schemes (Jameson, Shmidt and Turkel,
1981, and Mavriplis, 1988). This scheme, already including the necessary terms to account for changes in cell
area due to mesh motion or deformation (Batina, 1989, and Batina, 1991), can be written as

Q
(0)
i = Qn

i (11)

Q
(1)
i =

V n
i

V n+1
i

Q
(0)
i − α1

∆ti

V n+1
i
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C

(
Q

(0)
i

)
−D

(
Q
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i
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(12)
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(4)
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(16)

Qn+1
i = Q

(5)
i , (17)

where the superscripts n and n + 1 indicate that these are property values at the beginning and the end of
the n − th time step, respectevily. D(Q) denotes the artificial dissipation operator. The values used for the α
coefficients, as suggested by Mavriplis (1990), are

α1 = 1
4 , α2 = 1

6 , α3 = 3
8 , α4 = 1

2 , α5 = 1. (18)

In Eq. (17) the convective operator, C(Q), is evaluated at every stage of the integration process, but
the artificial dissipation operator, D(Q), is only evaluated at the two initial stages. This is done with the
objective of saving computational time, since the evaluation of the last is rather expensive. As discussed by
Jameson, Shmidt and Turkel (1981), this type of procedure is known to provide adequate numerical damping
characteristics while achieving the desired reduction in computational cost. Steady state solutions for the mean
flight condition of interest must be obtained before the unsteady calculation can be started. Therefore, it is
also important to guarantee an acceptable efficiency for the code in steady state mode. In the present work,
both local time stepping and implicit residual smoothing (Jameson and Mavriplis, 1986, Jameson and Baker,
1983 and Jameson and Baker, 1987) are employed to accelerate convergence to steady state. More details on
convergence acceleration techniques are found in Oliveira (1993) and Marques (2004).

4 Mesh Generation and Movement

The meshes used in the present work were generated with the commercial grid generator ICEM CFD c©, a
very powerfull tool capable of creating sophisticated meshes with very good refinement and grid quality control.
Figures 1(a) and 1(b) show the meshes around a NACA 0012 profile and a flat plate, respectively, which are
employed to obtain the results here presented.

(a) (b)

Figure 1: Mesh around (a) NACA0012 profile with 292 wall points and (b) flat plate with 236 wall points.

Unsteady calculations involve body motion and, therefore, the computational mesh should be somehow
adjusted to take this motion into account. The approach adopted here is to keep the far field boundary fixed
and to move the interior grid points in order to accomodate the prescribed body motion. This was done following
the ideas presented by Batina (1989), and Rausch, Batina and Yang (1990), which assume that each side of
the triangle is modeled as a spring with stiffness constant proportional to the length of the side. Hence, once
points on the body surface have been moved and assuming that the far field boundary is fixed, a set of static
equilibrium equations can be solved for the position of the interior nodes. Control volume areas for the new
grid can, then, be computed. The mesh velocity components can also be evaluated considering the new and old
point positions and the time step.

5 Aeroelastic Analysis Methodology

Due to the lack of space, the detailed aeroelastic formulation is not presented in this work. For such details,
please refer to Oliveira (1993) or Bisplinghoff, Ashley and Halfman (1955). Starting with the assumption



that the unsteady movements related to the aeroelastic phenomena, mainly flutter, can be approximated by
harmonic motions, a large computational cost reduction comes from the use of the indicial method. According
to this approach, the aerodynamic response to an harmonic excitation of any frequency can be obtained from
Duhamel’s integral of the response of the flow to a indicial motion. Following this same idea, and noticing that
the transient flow due to an implusive excitation takes a shorter period of time to die out than those that results
from an indicial motion, Oliveira (1993) proposed a similar methodology where the aerodynamic response are
evaluated in the frequency domain from the response to a implusive excitation in the time domain.

Therefore, the aerodynamic calculations for a determined flight condition are reduced to a single compu-
tational run for each structural mode. Moreover, the only linearity hipothesis adopted is of the aerodynamic
generalized forces to the displacement modes and amplitudes, which guarantees that this methodology captures
the flow’s nonlinearities and dynamics, except for those related to viscous effects which are not included in an
Euler formulation.

Nevertheless, the theoretical impulse movement is a singularity and the indicial one leads to the appearance
of infinite velocities, which makes both numerically untreatable. Hence, other smoother excitation functions are
employed (Davis and Salmond, 1980, and Mohr, Batina and Yang, 1989). The motion suggested by Bakhle et
al. (1991) is defined as

fp(t) =





4
(

t
tmax

)
exp

(
2− 1

1− t

tmax

)
; 0 ≤ t < tmax

0; t ≥ tmax

(19)

where the overline indicates the dimensionless time and tmax is the impulse duration. As can be seen in Fig. 2,
the function defined in Eq. (19) guarantees a smooth movement.
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Figure 2: Attack angle impluse excitation.

The methodology defined as analysis through transfer function by a impulse consists, then, of the following
steps:

• Obtaining the steady aerodynamic solution for a given Mach number and attack angle;

• Performing unsteady aerodynamic response evaluation departing from the steady solution given in the
previous item. This stage leads to time responses in terms of aerodynamic coefficients as result to a
impulse excitation for each of the modes;

• Obtaining the Fourier transform of the time responses applying a Fast Fourier Transform (FFT) algorithm.
This is done in the present work employing the FFT capability available in the commercial programm
Matlab c©. As shown by Oliveira (1993), the corresponding frequency domain is given by

f =
1

∆t

i

N
=

a∞
∆tc

i

N
; i = 0, 1, 2, ..., Nmax, (20)

Nmax =
{

N/2; if N even
(N − 1)/2; otherwise (21)

where c is the chord lentgh and a∞ the freestream speed of sound. Equation (20), rewritten in terms of the
reduced frequency based on the chord length, stands as

k =
ωc

U∞
, =

2πfc

U∞
(22)



k = 2πM∞∆t
i

N
; i = 0, 1, 2, ..., Nmax, (23)

where M∞ is the Mach number refering to the undisturbed conditions.
As the input is not exactly an implusive excitation, the real impulse response is evaluated using the Duhamel’s

integral concept and a well-known property of the convolution integral, as given by Brigham (1988)

g(t) = fp(t) ∗ i(t) ⇒ G(f) = Fp(f)I(f), (24)

I(f) =
G(f)
Fp(f)

. (25)

where i(t) represents the time response to a implusive movement and g(t) is the response to the impulse excitation
given in Eq. (19). The functions in capital letters are Fourier transforms of the corresponding functions in low
case letters. Therefore, after obtaining the FFT of the time response, it has to be divided by the FFT of the
input impulse function. Although the input is not the exact impulse excitation, it is capable of exciting the
reduced frequencies of interest in aeroelastic studies;

• Aproximating the obtained data with an interpolating polynomial, shown in Oliveira (1993);

• Formulation of the corresponding eigenvalue problem, valid for a determined range of dimensionless velo-
cities, and, finally, flutter speed prediction through a root locus analysis.

6 Results and Discussion

Before attempting applications of the proposed methodology, some validation simulations were performed
with the CFD tool. This has been done throughout the entire development of this code as can be seen in
Azevedo (1992), Oliveira (1993) and Simões and Azevedo (1999). The present authors proceeded with this
effort obtaining the results shown in Figs. 3 and 4 for a NACA 0012 profile at M∞ = 0.755 performing a
2.51◦ amplitude harmonic pitching movement about the quarter-chord with k = 0.1628. The authors point out
that k is the reduced frequency based on the chord length, defined in Eq. (22). Figure 3 presents the pressure
coefficient along the chord in different positions of the cycle and compares them with results presented by
Batina (1989). The solutions in terms of aerodynamic coefficient hysteresis curves are given in Fig. 4, together
with experimental data from AGARD (1982). The value of Cm is referred to the quarter-chord point. The
present results are very close to those obtained by Batina (1989). Some small differences appear near shocks
and the authors believe that they are due to the use of a more refined mesh in the present work. Moreover, the
deviations between numerical and experimental results seem to be systematic and caused by experimental data
reduction errors.
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Figure 3: Comparison of instantaneous pressure distributions for the NACA 0012 airfoil in pitching motion.

Once the CFD tool was tested and proved to be a reliable one, the next step was to proceed in obtaining the
unsteady responses of interest. The approach selected was to reproduce the results presented by Rausch, Batina
and Young (1990) for a flat plate impulse response at M∞ = 0.5. This response was obtained for pitching about
the quarter-chord point, Fig. 5, and for plunging, Fig. 6. The correspondent Fourier transform, together with
the results given by Rausch, Batina and Young (1990), are shown in Figs. 7 and 8.
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Figure 5: Cl and Cm response along time to pitching impulse excitation.
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Figure 6: Cl and Cm response along time to plunging impulse excitation.

Thse results show a very good agreement between calculations performed by the present authors and the
literature data. This means that the first three items which compose this methodology are completely done.
Unfortunetly, to the date this work was written, the methodology has not been entierly applied and tested.
However, the authors will continue this effort even more encouraged by the success obtained so far.

7 Concluding Remarks

One can see in the present results, this is an on going work since no aeroelastic problem has been really
studied. Nevertheless, the preliminary results obtained so far are excellent and encourage the authors to move
forward to successfully achieve the complete verification of the methodology proposed. The CFD tool developed
by the CTA/IAE group has been widely tested and has proved to be a reliable source of the aerodynamic data
for aeroelastic use in the subsonic regime. However, the proposed methodology aims the transonic regime, and
further experiments will determine if it provides coherent results. The initial unsteady results presented here
indicate that the CFD tool behaves very well in the transonic regime too.

Once validated, this methodology will provide the required capabilities to study aeroelastic problems using
reduced order models (ROM) in a near future. Therefore, this work developement is a fundamental research to
the evolution of aeroelastic numerical studies at CTA/IAE.
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Figure 7: Cl and Cm response to pitching impluse excitation in frequency domain.
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Figure 8: Cl and Cm response to plunging impluse excitation in frequency domain.

8 Acknowledgments

The authors gratefully acknowledge the partial support for this research provided by Conselho Nacio-
nal de Desenvolvimento Cient́ıfico e Tecnológico, CNPq, under the Integrated Project Research Grant No.



501200/2003-7. The first author was also supported by a PIBIC scolarship under Grant No. 109339/2001-0.

9 References
AGARD Report No. 702, ”Compendium of Unsteady Aerodynamic Measurments,” 1982.
Azevedo, J.L.F., ”Euler Solutions of Transonic Nozzle Flows,” III Encontro Nacional de Ciências Térmicas - III
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(also available as Report No. 91/9, Institut für Strömungsmechanik, T.U. Braunschweig, F.R. Germany,
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radas,” PIBIC-ITA Partial Activities Report, Instituto Tecnológico de Aeronáutica, São José dos Campos,
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