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Abstract. The aim of this paper is to evaluate forces and torques in flexible joints of a flexible multi-body system, FMS. 
To represent such a FMS a 2D non-linear model based on finite element method is built. Its numerical form solution 
based on a stable integration method and on the non-linear Newton-Raphson scheme is described. As the evaluation 
procedure first requires that some model physical properties are obtained as identified parameters, two procedures are 
used: direct and indirect identification. They are based, respectively, on dynamic equilibrium verification and on 
comparison between simulated and measured kinematics of the proposed model. The development of the two 
procedures and a performance comparison between them is carried out. 
 
Keywords: Dynamic simulation of flexible multi-body system, non-linear numeric resolution, temporal parameter 
identification. 

 
1. Introduction  

 
Many studies have shown that some kinematic and dynamic factors play an important role in osteoarthritis of hip 

joint (Dujardin et al, 1997) , (Mejjad et al, 1998). In order to have a better comprehension of such disease evolution, its 
related causes, as well as a better understanding of worn phenomenon of femur implant, the dynamic efforts (forces and 
torques) arising in the contact between the head of the femur and the hip in a normal human activity are necessary. 
Nevertheless, the use of inner sensors would be extremely hard to implement not to mention the troublesome for the 
user. Then, the remained option is to evaluate those efforts by means of a mathematical model. In biomechanical 
studies, the used mechanical models are classically based on the rigid body motion hypothesis, which, in the case of 
dynamic flexible systems, are neither reliable nor ranged in terms of uncertainties. Nevertheless, with such rigid 
behavior, dynamic parameters can be evaluated directly through an inverse dynamic strategy. The method consists of 
introducing measured kinematics in the equilibrium dynamic equations and considering external load and other 
parameters as unknowns. This can be quite easily done because few kinematic parameters are necessary. The whole 
kinematic behavior of a rigid solid can be described by only six parameters: 3 displacements and 3 rotations. A similar 
approach, named direct identification procedure, may be followed in the case of flexible models. However, the method 
needs that all kinematics data during a human gait are obtained, what is a challenge. One has to notice that, in the case 
of flexible bodies, the whole kinematics is described by a continuous field. That means, at least, a large number of 
parameters are necessary to identify each body configuration which implies in a measure system able to capture the 
whole body kinematic. In order to answer this need, an indirect identification procedure, dealing with only a part of the 
kinematic data, is proposed. These two different procedures are described in the following sections. A comparison 
between both will be made later through a numerical study involving a non-linear model based on the concept of open-
chain mechanisms, with flexible beams and imperfect joints in 2D space. Those procedures shall be able to evaluate 
some physical parameters of that model and have in common a main development axe which consists in the two 
folowing steps: 
1. Write the differential algebraic equations DAE of the dynamic flexible system by Eq.(1), employing some 

supposed known parameters psol and using finite element approach. The terms in Eq.(1) will be explained in the 
next section.; 
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2. Solve them by using a temporal resolution scheme which will allow to gather the data set or reference kinematic set 

of the problem. This reference kinematic set, represented by a bar placed over the variables in sections 4 to 7, 
means respectively, positions, velocities and accelerations of nodal variables and has been obtained by two 
different ways: i) using the simulated response for the solution parameters psol; ii) evaluating velocities and 
accelerations by means of central finite difference method from the simulated position response q given in i). 

 
2. Remarks about the development of DAE 
 

To evaluate all terms of the dynamic and constraint equations of DAE, we need many structural data as geometric 
and material information of the problem. We also need the involved external forces. All those informations can be 
regarded as a set of system parameters p. The development of DAE is made for the two basic elements employed in the 
problem: the co-rotational beam and the co-rotational linear and torsional spring elements. We also need to develop 
their stiffness elemental matrix as preparatory step to the solution of DAE. 
The inertia qM ��  and gyroscopic qM ��  forces in Eq.(1) are evaluated from kinetic energy of a constant section beam. The 
complete mass matrix M, related to inertia forces, can be obtained by assembling of the element mass matrix iM , 
which can be found in (Dhatt and Batoz, 1990) in their corresponded degrees of freedom. The iM , corresponding to 
co-rotational linear and torsion spring element, is set to null matrix due to hypothesis of its absence of mass. The mass 
temporal derivative M� , related to gyroscopic forces, is obtained from a similar way with its elemental matrix  

iM� given by Eq.(2). R is the rotation operator describing the orientation of the element with respect to a inertial frame. 
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The evaluation of inner forces intf  of beams and linear springs is made through a co-rotational element formulation 

using Kirchhoff theory described in (Crisfield, 1991). The aim of this formulation is to subtract the rigid displacements, 
translation and rotation, from the total displacement of an element. This operation allows us to keep only elastics 
displacements and to compare them to the undeformed element. After that, one can assign this filtered deformation to 
the developed internal forces and torques. The evaluation of inner forces intf  concerning the torsional spring element is 
straightforward because they are not under influence of the rigid displacements of the element. 

The term λλλλTB  represents the reaction forces, i.e. the developed efforts to satisfy the constraint equations in the 
second equation of Eq. (1). Then all system constraint equations, ΦΦΦΦ vector, are written as functions of our predefined 
global nodal variables q. Thus, B represents the gradient of ΦΦΦΦ vector related to q. The vector λλλλ,    quantifying the 
influence of each constraint in the system forces, is obtained during the temporal resolution of DAE. 

The two last terms of Eq. (1) are the external forces extf  and the field (gravity) force g. Each nodal external force 
applied in the dynamic system must be placed in its corresponding degree of freedom in the global vector extf . The 
vector g is built from the assembly of elemental field forces also in its degree of freedom. This elemental field force is 
defined as being the derivative of the elemental potential energy with respect to adopted coordinates q. The elemental 
field forces corresponding to co-rotational linear and torsional spring, are set to null vector due to their absence of mass, 
as stated before. 
 
3. Temporal resolution scheme of DAE 
 

Finding the solution of Eq. (1) in time tt ∆+ implies to find a variable set (((( ))))tttttttt qqq ∆∆∆∆++++∆∆∆∆++++∆∆∆∆++++∆∆∆∆++++ λλλλ,,, ���  that verifies 
simultaneously its two equations. Then, near of the solution, the vectors (((( ))))tttttttt qqqr ∆∆∆∆++++∆∆∆∆++++∆∆∆∆++++∆∆∆∆++++ λλλλ,,, ���  and (((( ))))ttqr ∆∆∆∆++++ΦΦΦΦ , 
defined in Eq. (3) must tend to 0. 
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However, the presence of constraints equations in DAE can cause severe instabilities in DAE responses. The 

importance of high frequencies in those responses are reduced in order to avoid those instabilities. This is done by the 
evaluation of the residual vectors through Eq. (4) and Eq. (5). That means that between two very close time, t and 

tt ∆+ , the accelaration is supposed constant. 
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This procedure, named HHT ( Jalon and Bayo, 1994) imposes less loss of total energy during the numerical 

resolution procedure. The strategy starts from known equilibrium set (((( ))))tttt qqq λλλλ,,, ���  at the time t. Then equilibrium 
perturbation is imposed in this variable set at time tt ∆+  by using Eq. (6).  
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The stability parameters, γ and β, are related to a numeric dumping parameter α . αt  is a time between t and tt ∆+  

defined by ( )( ) tttt ααα −∆++= 1 . The best choice of α  is in [-1/3,0]. 0=α  meaning that no numeric damping is 
being added to the solution to avoid numerical instabilities, corresponding to classical Newmark scheme. In the other 
hand, 3/1−=α  means a great numeric dumping and brings to the system solution a high loss of energy (Geradin and 
Cardona, 2000).  
 
3.1. Non linear solution 

 
The DAE we deal with is a non linear system of equations and imposes to solve an adapted procedure. If the 

classical Newton-Raphson NR scheme is chosen, the tangent matrix of the system has to be evaluated. It is given by the 
differential of the residual vector with respect to q in Eq. (7). 
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The term concerning to element internal forces is the only to be evaluated and can be found in (Crisfield, 1991). The 

differential with respect to q of the two first terms of Eq. (7) are very costly to evaluate just for convergence (Geradin 
and Cardona, 2000). The remaining terms are constant with respect to q. To apply the classical NR scheme, Eq.(1) has 
to be linearized in Eq. (8) form, in order to take account the temporal scheme. 
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Equation (8) can be rewritten in matrix form of Eq. (9), corresponding to a linear system, which has to be solved. 
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The exponent n means the NR iteration number. Variables are updated during the NR process by means of Eq. (10) 

The process stops when the convergence of the residual vectors, Eq. (4) and Eq. (5) evaluated by HHT scheme, is 
checked. 
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4. Direct Temporal Identification 

 
The direct strategy is based on the dynamic equilibrium equation Eq. (1). If a complete set of variable kinematic 

response (((( ))))ttt qqq ,, ���  and a set of initial parameters (((( ))))00p λλλλ,  of a dynamic system are avalaible, the residual 
equilibrium of those parameter dependent forces and torques of Eq.(1) can be evaluated by minimizing Eq. (11). 
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Then, the proposed solution can be regarded as an optmization procedure declared by means of Eq. (12), which search 
for a parameter list psol that minimize residues of Eq. (11),. 
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At any studied time t, this z residual vector, which is non linear dependent from p and λλλλ, has to be equalized to zero. 

This can be done by a classical less square method and a first order Newton-Raphson strategy. Starting from a given 
(((( ))))00p λλλλ, , parameters are interactively modified through Eq. (13) until convergence is reached. 
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In that expression, 
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numerically evaluated by a central finite difference procedure. 
This strategy is numerically efficient because it is based on an interactive procedure, i.e. no temporal resolution is 

needed. Nevertheless, it shows a high sensibility to introduced measures and specially to accelerations. The main 
difficulty stays in the need of having measure data for all degrees of freedom introduced in the model. If this can be 
hardly done for displacement variables, it is almost impossible for rotations variables, much less in the context of bio-
mechanic study, in which humans have to be instrumented. In order to avoid this difficulty an indirect procedure using 
only available kinematic variables have been proposed. 
 
 
5. Indirect Temporal Identification 

 
The proposed procedure consists in reducing the difference between reference kinematics or data and evaluated 

variables, which are obtained through the solution of DAE Eq. (1). As in the previous section, the proposed solution can 
also be regarded as an optimization procedure, but declared by means of Eq. (14), where a function is minimized by a 
specific parameter list psol. The Greek variables represent the "influence" weights of each difference term. 
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With the parameter list psol, which also includes the set of Lagrange parameters λ λ λ λ, the dynamics efforts in the joints and 
the reaction forces can be obtained through Eq (1), respectively, by correspondent components of fint and BTλλλλ. 

The main advantage of this procedure is that the residue vector does not have to be composed of all kinematic data, 
but only of a part of them. With such a choice, velocity, acceleration as well as rotational data are not employed in the 
comparison vector z Eq. (15).  
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Even though, two tests were made using the whole kinematics data, then Eq. (16).  
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Starting by simulating the movement with a initial given set of parameters (((( ))))00p λλλλ,  until the comparison time t is 

reached, the kinematics variable set (((( ))))tttt qqq λλλλ,,, ��� is obtained. The residue vector z is evaluated and then, through the 
optimization procedure, updated until convergence. As the system is highly non linear, it also imposes a numerical 
evaluation of the gradient matrix, necessary for the optimization procedure and described in the previous section. This 
fact implies to run the whole simulation from initial time until time t for each disturbance introduced in each unknown 
parameter. For long time simulation, this procedure becomes calculating time expensive. 
 



 
6. Numerical evaluation 

 
Before to face the proposed biomechanical problem, some tests are made on a simpler model where the formulation 

and results can be, respectively, easier and more conclusive. This proposed model example is shown in Fig. 1. Despite 
its geometric simplicity, it can bring all sort of difficulties expected in a biomechanical model.  It's composed of two 
flexible bars linked by torsional and linear spring element attached to a fixed point through this same element, but with 
different stiffness that will be the parameters p to identify. 

The following data were given to this problem: bar's Young modulus E=2.1x1010Pa, section area A=25x10-6 m2, 
inertia section I=52.1x10-12m4, bar's volume density ρ=7800 kg/m3, bar's initial length Lb=0.9 m, non extended spring 
length Ls=0.1 m, k torsional = 0.5 Nm/rad, k linear first element = 700 N/m, k linear third element = 400 N/m. 

Letting this whole multi-body system fall freely from a same initial angle of bars and springs with respect to a 
vertical line equal to π/6. Thus, the DAE are integrated for 3s, using HHT scheme, and all nodal kinematics responses 

(((( )))) (((( )))) (((( ))))[[[[ ]]]]ttt qqq ,, ���  are registered as our simulated set. Then, using just (((( ))))tq , we generate our measured set by finite 
central difference method. At times chosen by the greatest difference between simulated and measured responses, 
obviously found only for (((( )))) (((( ))))[[[[ ]]]]tt qq ��� , , we decided to apply the two temporal identification methods starting from a 
vicinity of our known parameter solution psol = [700  0.5  400  0.5]T. 

 

Figure 1. Two flexible bars linked through torsional and linear spring elements 
 
7. Results and Conclusions 
 

The two identification procedures were evaluated at times  t1=0,69  s and  t2=2,83  s. These times were close and far, 
respectively, from the starting state. They were also defined according to the criteria of bad numerical evaluation, 
established in the previous section.  

 The simulated reference values were obtained during the resolution of the system, with a parameter set psol that are 
the solution of our problem of identification. The measured velocities and accelerations employed as reference values 
were obtained applying a central finite difference procedure over the simulated reference positions. 

The indirect identification procedure was performed with two residues. These last are resumed in Eq. (15) and Eq. 
(16). In Eq. (15) only the nodal position variables were used in ( )tq  and ( )tq , as for example in 

[[[[ ]]]] [[[[ ]]]]Tz n542
T

n542 yxyxyxyx −−−−==== . This has been done in order to evaluate the capabilities of the 
procedure when dealing with a reduced residue vector. 

Identification evaluations were summarized in Tab. 1. Its terms named “Good convergence”, “Right convergence” 
and “Reasonable convergence” refer, respectively, to psol, p1 = [663  0.49  379  0.49]T and p2 = [757  0.50  465  0.52]T 
sets. For node 5, Fig 1, the sensibility of evaluated kinematics to those parameter sets were shown in Fig. 2, Fig 3 and 
Fig. 4. The results have shown that the direct and indirect identification procedures are very sensible to acceleration 
modified values, but not to velocities and less to displacements. Figure 5 shows the sensibility of forces and torque to 
psol, p1 and p2, in the first element spring. 
The simulation time also plays an important role in the results obtained. We could verify that the more the simulation 
time is big the more the starting point has to be near of the solution to convergence. This can be explained by the great 
differences, specially in trajectory accelerations, generated by different parameter sets. Moreover, the time processing is 
strongly linked to time simulation for the indirect procedure. 

The direct identification procedure will be abandoned because it is not adapted to data characteristics. In the other 
hand, the strategy of using the reduced simulated set in indirect procedure has revealed a good alternative to follow due 
to its similarity with the available data of the original biomechanical problem. However, more powerful search methods 



 
 
 

Table 1. Tests results 
 

Identif Reference Data t1 = 0.69 s t2 = 2.83 
Simulated set Good convergence for huge 

perturbations in departure point 
Same results for t1 

Simulated set except speed 
that comes from measured set 

Right convergence for huge 
perturbation in departure point 

Same results for t1 Direct 
 

Measured set Bad convergence even starting 
from solution parameter set 

Same results for t1 

Simulated set with (16) Good convergence starting from 
small perturbations (0.93 to 1.10) 

in parameter solution set 

Same results for t1 but (0.90 to 
1.02) 

Positions and accelerations 
from simulated set with (16). 
Velocities from measured set 

Good convergence starting from 
small perturbations (0.93 to 1.10) 

in parameter solution set 

Same results for t1 but (0.90 to 
1.02) 

Measured set with (16) Bad convergence even starting 
from parameter solution set 

Same results for t1 
Indirect 

Simulated set with (15) Good convergence starting from 
small perturbation (0.90 to 1.18) 

in parameter solution set 

Reasonable convergence but for 
tiny perturbations (0.98 to 1.02) 

 
 

     
 

Figure 2. Displacement sensibility to psol, p1 and p2.     Figure 3. Velocity sensibility to psol, p1 and p2. 
 

    
Figure 4. Acceleration sensibility to psol, p1 and p2.     Figure 5. Force sensibility to psol, p1 and p2. 

 
are required to overcome the uncertainties of the departure searching point when the answer is not known. Future tests, 
using many reference times and introduced noise in position reference data, will be performed to verify how those 
changes can affect the response quality and the departure point range of parameter set. 
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