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Abstract. Traditional suspension tuning for ride comfort takes use of a series of physical prototype evaluations by
skilled drivers, who analyze the vehicle performance in subjective terms. In this approach, the suspension components
(springs, shock absorbers, bumpers, etc) are usually optimized one at a time, regardless of the consequences of the in-
teractions among them in the global suspension behavior. Besides, the costs and construction lead times can not be
afforded in the current tight development cycles, and due to its subjective nature, even with extremely skilled drivers, it
is not possible to assure that their evaluation is exempt enough. This paper presents an objective approach, based on
computer tools. It takes use of a vehicle dynamics simulation tool, used to analyze the vehicle behavior in different
road conditions, and optimization tools to select the components. Two optimization tools  are studied,  Robust Engi-
neering Method and Response Surface Methodology (RSM). Both methods show that, under current simulation condi-
tions, some of the suspension components do not have high influence on ride comfort, so they can be selected by other
criteria, such as handling criteria or cost. RSM, unlike Robust Engineering Method, also produce an empirical model
that can be used to study parameter interactions.
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1. Introduction

The use of simulation tools in the development cycle of vehicles is becoming more and more common in the auto-
motive industry, since they are capable of reducing the lead-time for a new model launch and also helping to reduce the
development costs. In the case of ride comfort, much has been made in the last years to make better and more reliable
vehicle dynamics simulation tools. However, this progress in the simulation tools capacity and precision has not always
been followed by an increase use of these tools in the suspension tuning, specially because of the subjectivity nature of
the ride comfort evaluation, which makes difficult the development of criteria to correlate the dynamic variables (accel-
erations, forces, velocities, etc) that can be obtained by the simulation packages and the ride comfort evaluation grades.
This problem has already been treated at General Motors do Brasil (GMB), by Vilela, Franceschini and Mesquita
(2002), and the next point that deserves special attention is the optimization technique to be adopted. The simulation
software, described in Vilela (2003) calculates dynamic variables of the vehicle riding a prescribed road surface, and
they are used to calculate the evaluation grade of the simulated suspension, and several suspension configurations can
be evaluated in this way. The optimization problem is then finding the best configuration. In this paper two approaches
are studied, robust engineering (Phadke, 1989; Ross, 1988) and response surface engineering (Myers and Montgomery,
2002; Myers et al., 2004).

2. Description of the optimization problem

The modeled vehicle is a passenger vehicle with a Mc Pherson front suspension and semi-independent rear suspen-
sion with twist beam. Details of the model can be seen in Vilela (2003) and in Vilela and Gueler (2003), . In the present
work, the following suspension parameters can be adjusted:

- Stiffness of the stabilizing bar, front suspension.
- Stiffness curve of the front spring.
- Stiffness curve of the rear spring.
- Front shock absorber curve.
- Rear shock absorber curve.
- Stiffness curve of the front bumper.
- Stiffness curve of the rear bumper.
- Rear tire pressure.



Usually the ride comfort is studied for one specific load condition, and, after adjusting the suspension parameters
reaching a satisfactory result, this suspension configuration is checked in other load conditions (up to full payload) to
see if the results are adequate. This procedure does not lead to an optimal configuration concerning all the load range,
and as it is not possible to forecast how the customer will load the vehicle. So the optimization problem is adjusting the
suspension parameter that leads to optimum comfort considering that the vehicle load changes within certain limits. The
comfort is evaluated by the grade as calculated by the method described in by Vilela, Franceschini and Mesquita
(2002), and higher grade means better comfort. In the two optimization approaches studied in this work, robust engi-
neering and response surface method, each simulation is viewed as an “experiment run”, and a proper design of experi-
ment needed to be provided in order to accomplish the optimization task.

3. Robust Engineering Method

The robust engineering method deals with a parameter optimization considering that certain conditions can not be
adjusted by the engineer. These conditions are denominated as “noise variables”, and in the present study the noise
variable is the vehicle load. The optimization that can be performed through this methodology is a discrete one, i.e.
some discrete values for each parameter must be chosen and the robust engineering will point which one of these is the
best one, taken the defined noise into consideration. The robust engineering method also deals well with “qualitative
factors”, for instance, instead of selecting a stiffness value of a spring, these method can be used to select a “kind” of
spring. The robust engineering method takes use of balanced experiment arrangements (an orthogonal array) that can
indicate the parameters values that give the best results for the evaluation functions in questions (here they are the ride
comfort parameters values) without evaluating all the possible combinations of design parameters (factorial array). The
literature presents several orthogonal arrays that can be used, many of then empirically developed. In this study the
stiffness of the stabilizing bar (front suspension) can be selected between two values, all the other seven parameters can
be adjusted by selecting among three values. The adopted orthogonal array is a L18 array, which results in 18 simula-
tions (“experimental runs”) for each of the two adopted “noise” level. The noise levels are the curb (vehicle with full
fuel tank and no cargo load) plus driver load and the GVW (gross vehicle weight) load. Table 1 shows the L18 array. In
this table (-1) means lower parameter value, (0) means intermediate parameter value and (+1) means higher parameter
value.

Table 1. Orthogonal array L18.
Levels of parametersExperimental

run Stiffness of
the stabiliz-

ing bar

Stiffness
curve of the
front spring

Stiffness
curve of the
rear spring

Front shock
absorber

curve

Rear shock
absorber

curve

Stiffness
curve of the
front bumper

Stiffness
curve of the
rear bumper

Rear tire
pressure

1 -1 -1 -1 -1 -1 -1 -1 -1
2 -1 -1 0 0 0 0 0 0
3 -1 -1 +1 +1 +1 +1 +1 +1
4 -1 0 -1 -1 0 0 +1 +1
5 -1 0 0 0 +1 +1 -1 -1
6 -1 0 +1 +1 -1 -1 0 0
7 -1 +1 -1 0 -1 +1 0 +1
8 -1 +1 0 +1 0 -1 +1 -1
9 -1 +1 +1 -1 +1 0 -1 0

10 +1 -1 -1 +1 +1 0 0 -1
11 +1 -1 0 -1 -1 +1 +1 0
12 +1 -1 +1 0 0 -1 -1 +1
13 +1 0 -1 0 +1 -1 +1 0
14 +1 0 0 +1 -1 0 -1 +1
15 +1 0 +1 -1 0 +1 0 -1
16 +1 +1 -1 +1 0 +1 -1 0
17 +1 +1 0 -1 +1 -1 0 +1
18 +1 +1 +1 0 -1 0 +1 -1

From the suspension configuration grades one can calculate the signal-to-noise ratio using Eq. (1).
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In Eq. (1), 
N
S  is the signal-to-noise ratio, L1 is the grade at the curb (vehicle with full fuel tank and no cargo load)

plus driver load, and L2 is the grade at the GVW (gross vehicle weight) load. A higher signal-to noise ratio means a
better suspension configuration. Table 2 shows the simulation results.

Table 2: Simulation results.

Experimental
run

Grade at “curb
+ driver” load

L1

Grade at GVW
load

L2

Signal-to-
noise ratio

N
S

1 5.9 3.7 12.93
2 5.0 3.5 12.16
3 4.7 3.4 11.81
4 7.0 5.1 15.31
5 6.5 4.9 14.86
6 6.4 4.9 14.81
7 6.9 5.3 15.48
8 6.6 5.3 15.33
9 7.5 5.6 16.05

10 5.5 3.5 12.42
11 5.1 3.6 12.38
12 5.6 3.5 12.46
13 6.7 5.0 15.07
14 6.2 4.8 14.60
15 6.9 4.4 14.40
16 6.5 5.1 15.08
17 7.5 5.6 16.05
18 7.0 5.4 15.63

A signal-to-noise ratio can also be calculated for each parameter level:

jij N
S

nN
S ∑= 1                                                                                                                                                             (2)

The signal-to-noise ratio 
ijN

S  of parameter i at level j is the mean value of the signal-to-noise ratios 
jN

S  of all ex-

perimental runs where the value of the ith parameter is at level j.
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Figures (1) and (2) show the signal-to-noise ratio for the suspension parameters. The optimal suspension configura-
tion is then set up from the best parameter levels.

From Fig. (1) the best levels are –1 for the stiffness of the stabilizing bar, +1 for the stiffness curve of the front
spring, –1 for the stiffness curve of the rear spring, and –1 for the front shock absorber curve.
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In Eq. (3), y is the suspension configuration grade, x is the vector of the parameter values (its elements are x1, x2, x3,
x4, x5, x6, x7, x8), b0 is the value of the function y at the center point (z = 0 and x = 0), and is also known as the intercept
value, b is a column vector of partial regression coefficients, B is a matrix that establishes the two-factor interactions
(also composed of partial regression coefficients), and h is a column vector that establishes the interaction between the
parameters values and the noise (also composed of partial regression coefficients). Using least squares method, the fol-
lowing approximation is attained:

( ) ε+⋅⋅+⋅⋅+⋅+= zbzy hxxBxxbx TTT ˆˆˆˆ,ˆ 0                                                                                                                (4)

As the specific selected model does not have quadratic terms (as 2
1x  or 2

5x ), the diagonal terms of the matrix B are
all null. The total number of the coefficients to be estimated is 46, as there are 8 adjustable parameters plus 1 noise vari-
able. To estimate these partial regression coefficients a fractional factorial design is used. As there are 9 factors with 2
levels each, a full factorial design, which is the simulations of all possible combinations of parameter levels, will de-
mand 29 simulations (29 = 512). Considering the model shown in Eq. (3), a 29–2 fractional factorial design is adequate to
estimate the coefficients, which results in 27 = 128 simulations. The 29–2 fractional factorial design is composed of a full
factorial design of 7 coefficients, which results in an array of 7 columns (A,B,C,D,E, F and G) and 128 lines, plus 2 ad-
ditional columns which are formed by the element by element multiplication of columns ACDFG  and  BCEFG. As
these columns is composed by the factor levels, they all have only elements –1 and +1.

For each combination of the factor levels, that is a line in the matrix X in Eq. (5), there is a suspension configuration
grade yi. So, for 128 simulations, the vector y of grades has 128 elements and can be represented by:

εbXy +⋅=                                                                                                                                                                  (5)

Considering that the experimental runs are, in this work, simulations of a deterministic model, the vector of random
errors ε  is null. The matrix X, which is 128×46, is composed by a first column composed only by ones (the intercept
column I), all the  9 columns of the fractional factorial array, plus the 36 columns regarding the two factor interations:
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X        (6)

H = ACDFG                                                                                                                                                                 (7)

J = BCEFG                                                                                                                                                                   (8)

He least square estimator of b is:

( ) yXXXb TT 1ˆ −=                                                                                                                                                           (9)

The fitted regression model is:

bXy ˆˆ ⋅=                                                                                                                                                                      (10)

The vector of residues is:

yye ˆ−=                                                                                                                                                                     (11)

In order to test the significance of the regression the test statistic F0 is used:
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In Eq. (12) SSE is the sum of squares of the residuals, SSR is the sum of squares due to the regression model, k is the
number of estimated coefficients (except for the intercept) and n is the number of simulations, and in Eq. (15) SST is the
total sum of squares.
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The regression results show that many of the factors influence are not statistically significant. Using the backward
elimination method (Myers and Montgomery, 2002) to select the significant factors results in the following list:

Table 3: Significant factors.

Factor Regression coefficients
Intercept + 5.324
z – Vehicle load. − 0.838
x2 – Stiffness curve of the front spring. + 0.872
x4 – Front shock absorber curve. − 0.232
x6 – Stiffness curve of the front bumper. − 0.141
x8 – Rear tire pressure. − 0.030
z. x2 + 0.025
z. x4 + 0.104
z. x6 + 0.066
x2. x4 − 0.128
x2. x6 + 0.074

The F0 value is 1,442.5, which is far higher than the F0.99, 45, 128 ≅ 1.7, which means that the hypothesis of null re-
gressors can be rejected.

The empirical model of the suspension grade is then:

( ) 6428642 066.0104.0025.0030.0141.0232.0872.0833.0324.5,ˆ zxzxzxxxxxzzy +++−−−+−+=x
           6242 074.0128.0 xxxx +−                                                                                                                                  (16)

The maximization of the grade is attained with the following configuration:

x2 = +1
x4 = – 1
x6 = – 1
x8 = – 1

These values agree with the robust engineering selections.

One important characteristic of the response surface method is its sequential nature. In the simulations with factor
x2 = +1, the signal of the coefficient of factor zx6 do not agree with the estimated one. Then, using the same set of al-
ready done simulations, a new model is adjusted, with the value of the factor x2 fixed in +1.

The resulting model, which is valid only for x2 = +1, is attained using the forward inclusion method (Myers and
Montgomery, 2002):

( ) 48654 131.0042.0067.0021.0362.0813.0196.6,ˆ zxxxxxzzy +−−−−−+=x                                                         (17)



The F0 value is 10,087.7, which is far higher than the F0 value of the previous model.
Since the “noise” is the vehicle load (factor z), which can be considered a variable with a null mean value with vari-

ance 2
zσ , the model in Eq. (17) can be divided in:

( ) 8654 042.0067.0021.0362.0196.6ˆ xxxxy −−−−+=x                                                                                           (18)

( ) 4131.0813.0, zxzzg +−=x                                                                                                                                      (19)

The value of the grade with intermediate vehicle load is then ŷ , and the variability arV  of this value due to the ve-
hicle load can be expressed by:
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In Eq. (20) 2σ̂  is the mean squared error of the fitted model.

Using Eq. (18) and Eq. (19), and a linear quadratic programming solver, is then possible to find a configuration that
comply with following conditions:

( )[ ]zyVar ,min x
x

  subject to ( ) minˆ yy >x

and   −1 < xi < +1.

Selecting a very low value for ( )xŷ  we find the conditions for minimum variability, or maximum grade (recalling that
x2 = +1). Considering an intermediate adjustment, allowing a lower comfort grade in exchange of a lower variability,
the optimum configuration is then selected:

Table 4: Suspension configurations.

Factor Minimum variability Maximum grade Optimum configura-
tion

Grade = 5.7
Var  = 0.56

Grade = 6.7
Var  = 0.78

Grade = 6.4
Var  = 0.68

x2 – Stiffness curve of the front spring. + 1 + 1 + 1
x4 – Front shock absorber curve. + 1 − 1 − 0.2
x5 – Rear shock absorber curve. + 1 − 1 − 1
x6 – Stiffness curve of the front bumper. + 1 − 1 − 1
x8 – Rear tire pressure. + 1 − 1 − 1

The convenience of an analytical model allows the use of several optimization algorithms. In particular, the numerical
algorithms used in this work is from Scilab, a free software package for scientific purposes (Scilab Consortium, 2004).

5. Conclusions

Two optimization procedures are studied for the vehicle ride comfort optimization problem, the robust engineering, and
the response surface methodology. Both are capable of dealing with the problem, but the response surface methodology
provides a higher understanding of the influence of the parameter variation in the suspension performance, but at the
cost of a much greater number of simulations (128 against 36). Although the simulation costs are decreasing with the
development of computer hardware and software, the number of simulations may be important, because ride comfort
alone is not a good criterion for suspension tuning, and more complex models of the vehicle dynamics may be neces-
sary for simultaneous ride comfort and handling optimization.
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