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Abstract. This work presents a sensor system develop for the robot ALDURO, in order to allow it to detect and avoid 
obstacles when moving in unstructured terrains. The robot is a 4-legged walking-machine, steered by an operator, 
which gives simple instructions thourgh a joystick to be processed by a control computer, converting them into 
appropriate autonomous leg movements. To efective do that the robot has to automatically recognize the obstacles, 
locate and avoid them. A system based on ultra-sonic sensors was developed to carry this task on and, because of 
intrinsic problems with such sensors concerning to angular precision, a fuzzy inverse model of them was used to 
include the uncertainties about the measurements. To provide a map of the robot’s surroundings the use of TSK system 
as data fusion tool is proposed, in order to attend the peculiarities of ALDURO. The sensors are assembled in an I2C 
net, which communicates with the main controller (a PC) by the serial port, interfaced by a micro-controller. 
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1. Introduction 
 

At the Department of Mechatronics of the University Duisburg-Essen is under development the 
Anthropomorphically Legged and Wheeled Duisburg Robot (ALDURO), a large-scale four-legged hydraulic-driven 
walking machine with an onboard operator (Fig.1). The machine weights 1600kg, is 3.5m high, equipped with four 
identical hydraulically actuated legs and supposed to operate in very rugged terrains (Müller, 2002). Operations on 
smoother terrains enable to replace the feet of the rear legs by wheels, to enlarge speed and stability. 

 

 
Figure 1. The robot ALDURO  

 
As an anthropomorphic leg, each one has four degrees of freedom, what comprehends a total of sixteen degrees of 

freedom to control (Müller, Schneider and Hiller, 1998). The operator would not easily achieve to control the machine’s 
movement and anyway it would prevent him of executing another task. To avoid that, the movement generation was 
automated, enabling the control of the robot by a simple joystick, in this way the operator has just to dictate the desired 
movement direction and the robot is supposed to execute itself the leg control. 

But to achieve real walking and not only stable gaits on plan surfaces is necessary that the robot has information 
about ground and surround, especially when it controls most of the action. Hereby the collision avoidance task follows 



as a natural need, which must be implemented accordingly to ALDURO’s reality: large dimensions, slow and spatial 
movements, unstructured environment, and no need of a long term path planning (because of the onboard operator). 

Considering such characteristics, it was decided to implement a reactive navigation system, using a local map, based 
on data from ultrasonic sensors. Such sensors are quite precise with respect to range measures, but suffer of intrinsically 
poor angular resolution (Risse, 2002), what conversely brings an advantage: they cover a whole volume at each 
measurement. Because of such inaccuracy, the inverse sensor model plays a relevant role to interpret each measure 
based on the sensor characteristics. The so formed information has to be added in an appropriated way to a base of 
knowledge (the local map) through a data fusion process, which provides the necessary input data for the navigation 
task. In order to consider the uncertainties about the measurements and because of its relative simplicity, a fuzzy 
approach is used and an TSK inference system is developed, especially to save memory, what becomes a problem when 
modeling a 3D world. 
  
2. Inverse Sensor Model 

 
Sensor measurements are prone to errors, which are mainly due to the fact that the true physical sensing device 

usually does not operate in practice as it was modeled. To interpret the measurements from the transducer, a model of 
the sensor is needed; but the true physical operation of the transducer is most often too complex to model. Therefore, 
the interpretation of the sensor measurements often differs from the true physical value of the parameter that is 
measured. If this measurement error is somewhat random, it can also be interpreted as an uncertainty in the sensor 
measurement: since the sensor is prone to errors, it is uncertain about the true value of the measure. 

Differently from other sensing medias to measure the distance to a target (like laser beam); ultrasonic sensors have 
quite large emission beams, which makes a priori impossible to know the exact direction. Actually, conjugated use of 
many ultrasonic sensors or analysis of the shape of the returning echo allows a good approximation of the direction to 
the detected object. However, such shape analysis requires high quality analogue sensors and a posterior, complex and 
time-consuming data processing. Besides, conjugated use of sensors requires the possibility to operate receivers and 
senders separately, what is not always possible, especially with cheap range finder units, where the whole detection is 
treated as a single operation. 

Here a fuzzy inverse sensor model is proposed in order to describe the uncertainty degree about a measure. It is very 
similar to the one proposed by Oriolo, Ulivi and Venditelli (1999), but the inverse sensor model has to be fitted to the 
data fusion process that will be used here. Gambino, Oriolo and Ulivi (1996) have worked with occupancy grids, where 
actually two sensor models are used, the one used here corresponds to the sensor model of the occupancy map, modified 
to cover a 3D workspace.    

 
2.1. Fuzzy coordinates 

 
A set of three coordinates is necessary to completely localize a point with respect to a frame fixed to the sensor. 

These numbers are presumed to represent uncertainties of these coordinates too, based on the many sensor 
characteristics (beam shape, gain, precision…) and the measured distance. Considering a reference frame fixed to the 
sensor unit, with its X-axis along the sensor emission axis, a set of polar coordinates can be stated as {α, β, r}, where α 
represents the rotation around the Z-axis, followed by a rotation of angle β around the X-axis and r is the distance to the 
origin as shown in Fig.2. 

 

 
Figure 2. Sensor Coordinates 

 
Through a fuzzification process (Morgado de Gois, Germann and Hiller, 2003), a measure d of the ultrasonic range 

finder is to be converted in a group of fuzzy numbers {Α, Β, R}, which are actually fuzzy sets and thus represent the 
detected point’s coordinates and the uncertainty inherent to them. But a question arises: what would be the predicate to 
be attended in defining such sets? A good one could be just: ‘possible value’, the set of the possible values for the target 
coordinates, given a sensor read value. Then the fuzzy coordinate sets are so stated: 

 
• For a given measure d, if the sensor range inaccuracy is given by a multiplicative factor ε, the actual 

distance lays in the interval [d-ε.d; d+ε.d], respecting the ranging limits, i.e., the range domain [0; rmax]. 
Considering a normal distribution of possible values, a Gaussian membership function µ is employed. 



 

• In Morgado de Gois and Hiller (2004), is shown the correspondence between the gain factor of the sensor 
receiver and the possibility of a successful reading for an object on the same direction, or conversely, the 
grade in which a value (the point location) can be taken as a ‘possible value’. As this gain function can be 
approximated with very good precision by a Gaussian curve, such curve is adopted as membership function 
for α.  

• For the angle β the membership function is taken as unitary at its whole domain [0; 2π] because of the 
simple interpretation of the predicate: any value there is as possible as any other. 

 
In this way, based on a measured distance d, the uncertainty about the location of a detected point is stated in the 

present sensor workspace, for each coordinate, by the fuzzy numbers in Eq. (1). But it is necessary to have a single 
membership grade for each point s = (α, β, r) and not one for each coordinate. So in Eq. (2) the Cartesian product is 
used to find the membership function of the point s, stating a new fuzzy set S. The classical product operation is used as 
T-norm (the corresponding operator for intersection), what makes the calculation somewhat easier. 
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3. Map Building 
 
Given the description of the part of the environment contained in the sensor workspace by the fuzzy set S, several of 

these sets together, through the appropriate inference, are expected to lead to a more exact representation of the 
obstacles and thus of the surroundings of the robot. It is important to note that, for the ALDURO application, the 
objective is not to locate an object at once, but to support the robot navigation. To be used, the information from each 
individual sensor (or from the same sensor at different moments) has to be aggregated to the knowledge base (the map). 
In order to do that is necessary first to transform the obtained measure and its membership functions to the Cartesian 
reference system of the local map. 

Through the use of the Principle of Extension and coordinates transformation it is possible to obtain S in the local 
map’s reference system. Now, by to the construction of an occupancy grid as proposed by Moravec and Elfes (1985), 
these sets would be aggregated to 3D models of the environment. Here a simplified solution is proposed, where the 
whole spatial information is not necessary: a 2D map will be generated by a Takagi-Sugeno-Kang (TSK) Fuzzy 
inference system (Morgado de Gois and Hiller, 2004). The process is quite simple and tries simply to approximate the 
ground of the environment by a convex surface. That does not reflect the exact reality in most of cases, but describes the 
necessary features for ALDUROS’s navigation. That is so because of the robot’s dimensions, then it is not going to 
walk under objects and a minimal safety distance has to be kept. The process consists of: 

 
• The XY-plane (where the robot is considered to walk) is partitioned in many cells; 
• A local map around the robot and fixed to its body is constructed. As the robot moves the map is upgraded 

by simple shift operations, eliminating the cells which fall out of it and introducing new ones; 
• The fuzzy set S is projected on the map using the max operator over the membership grades. Such function 

is quite complicated to obtain analytically, but considering that for each possible value of d the support of R 
is much smaller than the corresponding length of S, we neglect the influence of R. Then, the support of S is 
reduced to a surface and is possible to obtain analytically its projection; 

• Membership functions are associated to the partitions on the map. As the inputs are fuzzy sets, singletons δi 
are used at the partitions, what makes the whole calculation a lot easier and faster; 

• In such kind of system (Takagi and Sugeno, 1985; Sugeno and Kang, 1988), the activation values wi are 
used to make a weighted average of the output functions fi (trough the so called fuzzy rules). Here it was 
employed one rule for each partition i of the map-cell; 

• Linear functions (zero order or first order) are used as output functions. 
 
Basically the fusion process can be seen in Eq.(3). At the end, the parameters (a, b, c, d) of the output functions are 

optimized in order to minimize the error between the estimated height kẑ  of the point (xk, yk) and the real one zk, 
actually this optimization leads to the most possible height. 
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4. Simulations 

 
Here is shown a comparison between results from fusion carried on by occupancy grid and by TSK system. Two 

kinds of linear functions were tested as output functions: constants and planes. The first one has one parameter per rule 
while the latter, three parameters, what makes the simulations much slower, since the dimensions of the matrices 
employed at the calculation are directly proportional to the number of parameters per rule. To the adjustment of these 
parameters was used recursive Least Squares method, and the number of samples processed at each cycle was adjusted 
at both models to fit the waiting time of the sensor device (considering the use of many sensors), in order to obtain the 
fastest processing. To execute the simulations: 

• Number of partitions on the map was varied; 
• Different input terrains (randomly generated) were used; 
• Different number of samples (simulated measurements). 

In Fig.3 are shown results obtained from a representative simulation. The contour plots in Fig.3 represent the input 
terrain (3.a), the occupancy map from occupancy grid projected onto the XY-plane by the max operator (3.b), the map 
constructed through TSK system with constants as output (3.c) and with planes as output functions (3.d). 
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(c)     (d) 

Figure 3. (a) Input Terrain; Maps obtained by (b) TSK with planes as output functions; (c) TSK with constants as 
outputs and (d) Occupancy Grid. 

 
As expected the TSK system seems to be a little more sensitive to different combinations of terrain and number of 

partitions than the occupancy grid, but the general performance holds. Comparing the best results of both to a given 



 

terrain (considering different number of partitions), the results of TSK are closer to the real terrain than the ones 
obtained by occupancy grid. TSK model gives a smoother result than occupancy grid if just a few samples are available. 
This advantage is more remarkable when planes are used as output functions. 

 
5. Planing 

 
Navigation techniques can be basically classified within two major groups: reactive and deliberative navigation. The 

proposed solution for ALDURO is a mix of both. Actually, the incremental building of a dynamic map of the 
environment (a typical deliberative task) is employed together to the formulation of local plans (typically reactive).  

There are many different techniques to carry out reactive motion planning, and for this particular application some 
peculiarities are important when choosing it. In this case the legs of the robot make full spatial movements and in 
addition, each leg has to fulfill the kinematical constraints imposed by the body movement and the joints. The controller 
developed here is based on the concept of general perception (Braunstingl, Sanz and Ezkerra, 1995; Braunstingl, 1996) 
applied to each shank. The reason to consider the shanks is because they are the most exposed area of the robot, the 
most probable area to undergo a collision, then the perception vector for a shank is calculated (with respect to a 
reference point c on it) considering each point on the local map. 

Two behaviors are implemented by means of variations of the original technique. In order to do that, the points on 
the map are divided in two groups: low points (possible for the robot to overcome with a simple step) and the high ones. 
For the points of the group high the perception vector PH is calculated just like originally proposed for 2D movement, as 
shown in Eq. (4). 
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Originally lmax is rmax, here it was set as suitable value to pass to the local map. The behavior correspondent to the 

group low is a little more complicated, because it aims a vertical movement to overcome small obstacles on the way. 
The heights of the map points are taken in account, generating the perception vector PL like in Eq.(5), but this behavior 
is active just when the foot hangs on the air in movement.  
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A fuzzy inference system which has the heights of the points as inputs with two partitions (low and high) and two 

rules, each one corresponding to Eq.(4) and Eq.(5), generates the controller outputs. Such outputs are used as 
corrections to the movement dictated by the step generator. If the correction is too big, it is transmitted to the movement 
of the robot body through the kinematical constraints between the body and the legs. The overall result can be seen in 
Fig.4, where a simulation with starting point at (1; 5) and a desired final point (9; 1) is shown. The robot performs the 
walking without problems, reaching the target point and avoiding the possible obstacles on its way. The use of a local 
map has sure increased the processing time in comparison to normal general perception navigation, but the 
improvement in information quality by the inclusion of the uncertainties of the sensors make that necessary. The result 
of such improvement is realizable by the performance of the robot at the many simulations executed with many 
different unstructured terrains.  

 



 
Figure 4. Robot path during simulation 

 
6. Implementation 

 
In this implementation the sensing and controlling tasks are structured in a modular partly hierarchical, partly 

parallel controller architecture. The main controller in ALDURO is a PC, running the modular software environment 
MCA2 (Modular Control Architecture Version 2). The encapsulated modules are arranged in a hierarchical structure and 
consist of defined inputs and outputs. Each module carries out a certain task and communicates with the connected 
modules. The whole work presented here is implemented in 2 modules: map building and obstacle avoidance. 

 

   
Figure 5. MCA2 module for ALDURO’s control 

   
The used sonar units are SRF08 by Devantech, which provide digital output, having a nominal range of 6m, which is 

actually much larger. The sensors are connected to an OOPic microcontroller through an I2C network, what enables fast 
and reliable communication, but this realization presents the drawback that these sensors accept not more than 16 
different addresses, making necessary the use of further microcontrollers if we want to use more sensors. That is easily 
achieved appending them to the I2C network, which is connected to PC through the serial port. 
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