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Abstract. In this work the dynamic behavior of a non-ideal vibrating system with two degree of freedom is studied by 
taken analytical solution. It system is composed by two lumped masses and connected by springs and dampers.  A non-
ideal DC motor with limited power supply is connected to one of the masses in order to disturb the system. The 
interaction between the dynamic system and the limited power of the energy source make this a non-ideal system. 
Appropriate choices of the physical system parameters create resonance conditions to ts natural frequencies. Regular 
and irregular (chaotic) vibrations dependng  of the choice of physical parameters and can be observed. An analytical 
solution for the system is obtained by using perturbation technique. Due to this solution one can observe typical non-
ideal phenomenon like the amplitude motion dependency to the frequency of the excitation. Conditions for system 
stability and existence of bifurcations are also obtained.   
 
Keywords: non-ideal system, resonance, perturbation technique, bifurcations, analytical solution. 

 
 
1. Introduction  
 
 

The knowledge of the dynamic properties of current engineering systems is an important step in systems design and 
control. In the design of structures it is necessary to investigate the relevant dynamics in order to predict the structural 
response due to excitation. In the selection of rotating machines for applications in structures, often little thought is 
given to the effect that the structure has on the machine, i.e., the excitation is considered independent of the system 
response. 

 Mathematical models of real systems are usually idealized by prescribing the forcing term as a known function. In 
reality, for a great number of structures this is not the case, and such structures are called non-ideal. In general, it is 
possible that an energy source fixed to a structure may be affected by the structural response. Systems having dynamic 
coupling between structure and the energy source often exhibit peculiar behavior, especially systems with limited power 
supply. Non-ideal systems operating in the neighborhood of a resonant frequencies are often more expensive and 
perform poorly as compared with ideal counterparts.  

Here we treated a problem with the passage of an unbalanced shaft through structural resonance, which can strongly 
magnified when the driving motor’s power is limited and the same order of the driving motor’s power consumption is 
required by vibrations at resonance. We know that this nonlinear phenomenon of interaction between shaft rotation and 
the system’s vibration, which results in a reduction of shaft’s angular acceleration, is known as the Sommerfeld effect 
(Sommerfeld, 1904).  

One of the problems often faced by designers is how to drive a vibrating system with a limited power supply 
through resonance and avoid the Sommerfeld effect.   

A number of authors studied this kind of vibrations. We mention some of them (Kononenko, 1969); (Evan-
Iwanoski, 1976); (Nayfeh and Mook, 1979); (Dimentberg et al, 1994) and recently (Balthazar et al, 2001, 2003, 2004) 
present a complete and comprehensive review on this kind of problem called non-ideal system.  

Note that the traditional cases where the motor has an unlimited power are called ideal systems. Then the non-ideal 
vibrating problem has a number of degree of freedom greater than their ideal counterparts, depending on the numbers of 
non-ideal motors exciting the structure. This fact can introduce the phenomenon of self- synchronization (Balthazar et 
al, 2004), which will not be treated here, because this paper concerns with only one non-ideal motor exciting the 
structure.       



Here we will analyze a non-ideal problem with two degrees of freedom operating near a resonance, by searching an 
analytical solution for this kind of problem. The mathematical model of the problem was defined earlier in (Balthazar et 
al, 2001) where is studied a strategy of control based on Tikhonov regularization. Some numerical results in the 
particular cases of internal resonances 1:1 and 1:2 were done respectively in (Tsuchida et al, 2003, 2004). The first step 
towards an analytical solution for this kind of problem was done in (Guilherme, 2004). 

     We organized this paper as follows:  
In the section 2 we define the mathematical model and exhibit the derivation of the governing equations. In the 

section 3 we obtain an approximate analytical solution to mathematical model defined in section 1. In the section 4 we 
analyze stability and bifurcation of the approximate analytical solution. In the section 5 we present the conclusions of 
the present work. In the section 6 some acknowledgements are presented and finally, in the section 7 we present the 
basic bibliographic references used here   

 
             

2. Mathematical model  and derivation of the governing equations 
 

The vibrating problem that will be analyzed here is shown in Figure 1.  
It consists of a block of mass , a linear elastic spring with coefficient of elasticity  and a linear damper with 

viscous damping coefficient . On the body of mass m , a non-ideal motor is placed, with a driving rotor of moment 

of inertia  and an eccentric mass  situated at a distance 

1m

m

1k

1c 1

J 0 r  from the axis of rotation. By means of a linear spring 

with coefficient of elasticity  and a damper with coefficient of damping , a body of mass  has been attached to 

mass .    
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Figure 1. Non-ideal dynamic system with two degree of freedom. A non-ideal DC motor with limited power supply is 

connected to one of the masses in order to disturb the system. 
 
The Lagrange equations of motion may be written as in (Balthazar et al, 2001): 
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where   
L  is the torque generated by the DC motor of limited power supply and )(ωH  is the resisting torque which will be 
ignored from now on. The parameters and  are constants depending on the type and power of the DC motor, and a b

)(ωU is the voltage of the motor.  Note that above equations include only non-linear members resulting from the 
interaction between the vibrating system and the DC motor (non-ideal system).  

Defining the new variables 
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We will obtain the dimensionless form of the equations: 
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where: 
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2
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2 / mmµθ = . 
 
 Note that the functions ϕω cos2  and ϕω′ sen  are inertia forces arisen from rotor action; The function ϕχρ sen1′′  

represents the moment of these inertia forces, noting that it depends on the coordinates of motion of the structural 
system and of the non-ideal energy source, exhibiting the interaction between them.  

 We also mention that the inertia forces make that the unbalanced force m0 deforms the spring’s k1 e K2 with an 
excitation frequency done by dtdϕω = .  

 Note that the equation of the driving torque of the DC motor, i.e., the motive force associated with the source of 
energy, is giving by  

 
u+−−=′ ωβαλλ  (2) 

 
with adimensional constants, defined by:  
 

1111 kmJkmUku u= ; 11 kma=α        and 11 Jkmb=β . 
 
U represents the voltage, a and b are constants depending of the type and power f the used DC Motor of limited power 
supply.  

The stability criterion depends essentially on the slope of the level curves of characteristic curves ϕλ= ddN  
adjusting the values of the parameters an e b. Generally, in practice; they are obtained from experimental procedures.   
Numerical results obtained before in the region of internal resonance 1:1 showed that the model of torque is relevant 
(Tsuchida et al, 2003b), since if we taken linear model of torque (see equation 3) by choosing suitably values of the 
parameters one obtains only regular oscillations during passage through resonance.  By other hand, if one takes 
nonlinear model for the applied torque F (equation 2) one obtains chaotic regimes.  

In this paper, we only consider the case of linear torque in order to obtain an approximate analytical solution 
for the problem. Then the will consider the particular case of (2): 

 
.  βωαλ +−= (3) 

 
2.1. Reduction to  a  normal  generalized  coordinates  

 
The governing equations of motion (1) present linear coupling terms that must will be absent in order to use a 

perturbation technique as that called Krylov and Bogoliubov method (Nayfeh, 1973); (Nayfeh and Mook, 1979); (Evan-
Iwanowski, 1976) and so on. 

 By introducing a linear coordinate transformation from the old to new coordinates, called principal coordinates and 
taking into account a suitably balancing order terms, we will obtain the governing equations of motion, in a matrix 
form:  
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being  u  the dimensionless generalized displacement of the vibrating system and  T][ 21 χχ=
 

       

 



 
are the matrices   of mass, damping and stiffness of the dimensionless system  (1). Note also that the vectorial function f 
contains the non-linear coupling terms of (1).  If we taken ∈ = 0 in equations (4) we will obtain a no perturbed system. 
 Rewritten the system  (4) in the form: 
  

 
(5) 

 
Its solution is well known and has the form: 
 

 (6) 
 
 and by introducing new variables v = [v1  v2]T, through a linear transformation u = Pv, where P is a quadratic matrix of 
order 2, which column pi = [pi1   pi2]T are the right eigenvectors corresponding to the eigenvalues λ1 e λ2 (of e Kpi = 

ii Mp2ω ),  we will obtain the   normal system: 
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2.2   Method of  variation of  parameters  

 
  Next, we will transform  (7) into a new where the new variables represent the essential parameters of the motion; 

the amplitudes of the oscillations, the angular phase displacements and frequency of the exciting force.   
By introducing a variable transformation s to z, being Tvvvv ][ 2211 ω&&=s  generalized coordinates of system  (7) 

and taking the linear part of  
 
s& + Λ s = ∈F (s, , t) and   z = [as& 1 1β  a2 ωβ2 ] 
 
 we will obtain  
 
z& = ∈f (z, t)+ O (∈2). 
 
 which coordinates  (ai, iβ , z) represent the amplitudes and phases of the oscillations of the coordinates vi and ω  

the frequency of the rotation of the DC motor.  
 Substituting them into (6) the equations  (7) become: 
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Then, after some algebraic manipulation we will obtain   the equations of motion in a suitably form  
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with  Tni e Hn defined by: 

 



 

 

 

 
Next we will obtain an approximate analytical solution to (7) under internal 1: 1 resonance conditions.  
 

3.   Obtaining of  an  approximate  analityical  soltion by using  an average method of perturbation theory 
 

In order to obtain an analytical solution of first order relatively to the small parameter ε , under the conditions of 
internal resonance 1:1, one needs to introduce two detuning parameters σ1 e σ2 such that 112 σωω ∈+=  and 

22 σωω ∈+= . In order to simplify the algebraic manipulations we consider the following notation 22 σα ∈−=∈ . 
The solutions of (10) will be taken into the form: 
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Where 
 y0T = [ A10 ξ10 A20 ξ20 Ω0 ] are constant values (representing stationary solutions), and ∈UT(y0 ,ϕ ) = [U1(y0 ,ϕ ) U2(y0 
,ϕ ) ... U5(y0 ,ϕ )] are a periodic solutions.   

By using  (Nayfeh, 1973) we will obtain the Fourier series: 
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  By using (7) and (11) and taking into account terms up to n=1 we will the averaging equations relatively to ϕ : 
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 In order to obtain the stationary solutions of (15)-(19), one considers them equal to zero.   
By using  (15) and  (17) one has that 01 =ξcos  and 02 =ξcos  that are coordinates of equilibrium point of 

averaging equations. Then supposing that 2k1 πξ =  and 2n2 πξ =  it is possible to consider two cases: 
 
1. K and n are even or k and n are odd, that is, ξ1 and ξ2 are in phase.  

        
      Then, one ha that 
  

1sin 1 =ξ         and       1sin 2 =ξ  (20) 
 
2. K and n are not even or odd simuostaneanaly, that is, ξ1 e ξ2 are not in phase.  

 
         Then  1sinξ  and sin 2ξ  have opposite signals and one can considers sin 11 =ξ  and 1sin 2 −=ξ . 
 

 Here, we only taking into account the when we consider ξ1 and ξ2 are in phase.  
 Then by considering the average equations (15)-(19) and by using the independent variable τ, and adopting 
  

)p(l 212211 ηηη ++=  and l )p( 222212 ηηη ++=   
 
we will obtain the following stationary states: 
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 Next, we will analyze the stability conditions of the obtaining solution 
 

4.  Stabilty analysis  
 

 The main purpose of the study of the stationary solution of the average equations is which concerns to the study of 
the stability of the considered system. According to Hartman-Grobman Classical Theorem if the considered solution is a 
hyperbolic point then the stability is equivalent to the stability of the original system.   

Next, we analyze the Lyapunov stability conditions of the system  (15)-(19) by using the classical de Routh-Hurwitz 
criterion and a condition to bifurcation of a particular solution which existence is based on Sotomayor Theorem 
(Sotomayor, 1986). 

 
4.1. Routh-Hurwitz(R-H) algorthm  

 
 The necessary and sufficient conditions to stability analysis is given by the analysis of average system (15)-(19) are 

given by the analysis of the coefficients of the characteristic polynomial 
 
 λ5 + B1λ4 + B2λ3 + B3λ2 + B4λ + B5 = 0  
 

given by the matrix  
 



 

 

 

 
being the coefficients Bi given by the following expressions: 
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 According to R-H criterion the real part of all eigenvalues are less than zero and if the following conditions are 
satisfied: 
 

                           
 

           
 

And according to these inequalities one will obtain the stability conditions: 
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 One can conclude that the stationary solution (20)-(23) of the dynamical system (15)-(19) is stable if the 

coefficients  (24) to (28) of the characteristic polynomial are positive and if the conditions  (29) to (32) are satisfied. 
 Next, we will analyze a bifurcation condition by using the same conditions of equilibrium that we considered here. 

We restrict our attention in the conditions to occurrence of saddle point bifurcation because it is the responsible to 
Sommefeld effect (Sommerfeld, 1904), that is, if we have an increase in the input power it causes the amplitude to 
decrease considerably and the frequency to increase considerably.     

 
4.2. Saddle-node bifurcation 

 
  
 In order to apply Sotomayor Theorem (Sotomayor, 1986) in the vibrating system 15)-(19) it is necessary to have 

equilibrium points, i.e., the equations (20)-(23) are satisfied. Besides this condition it must have one eigenvalue of 
simple kind, too.  

Then one need to have that the coefficient B5 (28) of the characteristic polynomial vanishes.  We need to remarked 
that   this adopted condition is restrict to this eingenvalue and don’t have another eigenvalues. Then, the terms 

 

 

(33)  

 
Cannot vanish. If them vanish the coefficient B4 (27) would vanishes, too. This fact contradicts the fact that the 
characteristic polynomial has only one simple eigenvalue. Then, one can suppose that the eigenvector that corresponds 
to a simple overvalue of the Jacobian matrix A is vT = [v1  v2  v3  v4  v5], and the corresponding eigenvector to the same 
eigenvalue to AT  is wT = [w1  w2  w3  w4  w5], satisfying the second necessary condition. Note that the eigenvector is 
found through the non-trivial solution of Av=0.  By using same procedure one can find the eingenvalue w of the AT, 
making ATv=0. 

 
 Considering the necessary conditions, one can find easily the sufficient conditions.  
 
 If one considers m as the control parameter m and f the vector field of the equation that define the (15)-(19), the 

Sotomayor Theorem (Sotomayor, 1986) establishes the following conditions, as being sufficient to have a saddle-node 
bifurcation in the equilibrium point (y0 , m0) in the considered vibrating system: 

 

 
 

being: 
  

 
 
Then, according (Sotomayor, 1986) if we choose the control parameter to the system (15)-(19) the constant β , 

parameter that depends on the power if the DC motor, one can obtain the necessary conditions to have saddle-node 
bifurcation in the averaging system (15)-(19): 
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5. Conclusions 
 
We analyzed the non-ideal vibrating problem, with two degree of freedom, defined by Figure 1, by using linear 

torque model and considering the 1:1 resonance. This analysis was based on perturbation technique by using an 
averaging method based on Krylov – Bogoliubov. The results obtained here such as stability and bifurcation results 
obtaining conditions to the occurrence of saddle- node bifurcation is important because it is related to the Sommerfeld 
effect. 

In summary, we results that we have obtained here, provide qualitative insight into the amplitude dependence of the 
external load on the source, and hence, can be used to explain why the coupling between source and response affect the 
power required to maintain steady-state conditions near resonance.   

This work suggests that further investigation I the developed ways to avoid the Sommerfeld effect, that is, the 
energy sink by using active control systems that could yield way of achieving smooth passage through resonance. 

 We also notice that numerical results will be published separately.  
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