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Abstract. The objective of this paper is to show a survey of results in the problem of gravitational capture in the bi-
circular restricted four-body problem using numerical and analytical techniques. A gravitational capture occurs when 
a massless particle changes its two-body energy around one celestial body from positive to negative without the use of 
non-gravitational forces. In this paper it is mainly studied the effect of a fourth-body included in the dynamics. The 
Earth-Moon system with the inclusion of the Sun is used for the simulations. The results show the savings obtained in 
this more realistic model when compared with the more traditional restricted three-body problem model, as well as 
several examples of trajectories. 
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1. Introduction  
 

The application of the phenomenon of gravitational capture in spacecraft trajectories has been studied in details in 
the literature in the last few years. Among the first studies are the ones performed by Belbruno (1987, 1990, 1992); 
Krish (1991); Krish, Belbruno and Hollister (1992); Miller and Belbruno (1991); Belbruno and Miller (1990). They all 
studied missions in the Earth-Moon system that use this technique to save fuel during the insertion of the spacecraft in 
its final orbit around the Moon. Another group of researches that made fundamental contributions in this field, also with 
the main objective of constructing real trajectories in the Earth-Moon system, are the Japaneses Yamakawa, 
Kawaguchi, Ishii and Matsuo (1992, 1993). In particular, Yamakawa wrote his Ph.D. Dissertation (Yamakawa, 1992) in 
this topic, with several important contributions in this field. A real application of those ideas was made during an 
emergency in a Japanese spacecraft (Belbruno and Miller, 1990). After that, some studies that consider the time 
required for this transfer appeared in the literature. Examples of this approach can be find in the papers by Vieira-Neto 
and Prado (1995, 1998). An extension of the dynamical model to consider the effects of the eccentricity of the primaries 
is also available in the literature (Vieira-Neto, 1999; Vieira-Neto and Prado, 1996). The present paper has the main goal 
of studying the potential savings obtained with the inclusion of a fourth body in the dynamics. Numerical simulations 
and analytical approximations are used. 

In the bi-circular restricted four-body problem gravitational capture is assumed to occur when the massless particle 
stays close to one of the two primaries of the system for some time. A permanent capture is not required, because in this 
model it does not exist, and the phenomenon is always temporary, which means that after some time of the 
approximation the massless particle escapes from the neighborhood of the primary.  

For practical purposes, the majority of the papers study this problem looking in the behavior of the two-body energy 
(E) of the spacecraft with respect to the Moon. From the value of this energy it is possible to know if the orbit is 
elliptical (E < 0), parabolic (E = 0) or hyperbolic (E > 0). Based in this definition, it is possible to see that the value of E 
is related to the velocity variation (∆V) needed to insert the spacecraft in its final orbit around the Moon. In the case of a 
spacecraft approaching the Moon, if the gravitational force of the Earth and the Sun can be used to lower the value of E, 
the fuel consumption required to complete this maneuver is reduced. In that way, the search for trajectories that arrives 
at the Moon with the maximum possible value for the reduction of E is very important. In the majority of the studies 
relative to this problem, a numerical approach of verifying the values of E during the trajectory is used to identify useful 
trajectories. Since the trajectories are very sensitive to the initial conditions, it is more convenient to start the 
propagation of the trajectories at the point of the closest approach with the Moon and propagate the trajectories with a 
negative time step. If there is a change of sign from negative (closed trajectory) to positive (open trajectory), this 
trajectory is considered an escape in the backward sense of time. It means that a gravitational capture occurs in the 
positive sense of time and this particular trajectory can be used to reduce the amount of fuel in an Earth-Moon transfer. 

 
2. Mathematical Model and Some Properties 

 
The model used in this paper is the planar bi-circular restricted four-body problem. This model assumes that two 

main bodies (M1 and M2) are orbiting their common center of mass in circular Keplerian orbits and a third body (M3) 
is orbiting these two primaries describing circular orbits around the center of mass of the first two primaries. Then, it is 
desired to study the motion of a fourth body, M4, that is supposed to stay in the plane of the motion of the other three 
bodies and that is affected by all of them, but it does not affect their motion (Szebehely, 1967). The standard canonical 



system of units associated with this model is used (the unit of distance is the distance M1-M2 and the unit of time is 
chosen such that the period of the motion of M2 around M1 is 2π). Under this model, the equations of motion of the 
massless particle, in the inertial reference system, are: 
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where, ( ) ( )2
E

2
E1 yyxxr −+−= , ( ) ( )2
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2
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, ( )tcosx ME µ−= ( )tsiny ME µ−= , ( )tcosx EM µ= , ( )tsinEyM µ= , ( )ψ= cosRx SS , 

, ( )ψ= sinRy SS tS0 ω+ψ=ψ , x,y are the coordinates of the massless particle, µE (0.9878715), µM (0.0121285), 
µS (328900.48) are the gravitational parameters of the Earth, Moon and Sun, respectively, (xE,yE) (xM,yM) (xS,yS) are the 
coordinates of the Earth, Moon and Sun, respectively, r1 r2 r3 are the distances between the massless particle and the 
Earth, Moon and Sun, respectively, RS (= 389.1723985) is the distance between the Sun and the origin of the reference 
system, ωS (= 0.07480133) is the angular velocity of the Sun, t is the time. Figure 1 shows a sketch of the system 
considered. 
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Figure 1 – Restricted four-body model (Cartesian Coordinate). 

 
 

4. The Gravitational Capture 
 
The “two-body” energy is no longer constant in the bi-circular four-body problem. Then, for some initial conditions, 

a spacecraft can alternate the sign of its energy from positive to negative or from negative to positive. When the 
variation is from positive to negative the maneuver is called a "gravitational capture", to emphasize that the spacecraft 
was captured by gravitational forces only, with no use of an external force, like the thrust of an engine. The opposite 
situation, when the energy changes from negative to positive is called a "gravitational escape". In the bi-circular four-
body problem and in the restricted three-body problem there is no permanent gravitational capture. If the energy 
changes from positive to negative, it will change back to positive in the future.  

One of the most important applications of the gravitational capture can be found in trajectories to the Moon. The 
concept of gravitational capture is used together with the basic ideas of the gravity-assisted maneuver and the bi-elliptic 
transfer orbit to generate a trajectory that requires a fuel consumption smaller than the one required by the Hohmann 
transfer. This maneuver consists of the following steps: i) the spacecraft is launched from an initial circular orbit with 
radius r0 to an elliptic orbit that crosses the Moon's path; ii) a Swing-By with the Moon is used to increase the apoapsis 
of the elliptic orbit. This step completes the first part of the bi-elliptic transfer, with some savings in ∆V due to the 
energy gained from the Swing-By; iii) With the spacecraft at the apoapsis, a second very small impulse is applied to rise 
the periapsis to the Earth-Moon distance. Solar effects can reduce even more the magnitude of this impulse; iv) The 
transfer is completed with the gravitational capture of the spacecraft by the Moon. 



 
5. Numerical Results 

 
To quantify the "gravitational captures" we studied this problem under several different initial conditions. The 

assumptions made for the numerical examples presented are: 
i) The system of primaries used is the Earth-Moon-Sun system; 
ii) The motion is planar everywhere, so the Moon and the Sun are assumed to be in coplanar orbits; 
iii) The starting point of each trajectory is 100 km from the surface of the Moon (rp from the center of the Moon).  

Then, to specify the initial position completely it is necessary to give the value of one more variable. The variable used 
is the angle α, an angle measured from the Earth-Moon line, in the counter-clock-wise direction and starting in the side 
opposite to the Earth (see Fig. 2); 

iv) The magnitude of the initial velocity is calculated from a given value of 
r

2VE2C 2
3

µ
−== , where E is the two-

body energy of the spacecraft with respect to the Moon, V is the velocity of the spacecraft, µ is the gravitational 
parameter of the Moon and r is the distance between the spacecraft and the center of the Moon. The direction of the 
velocity is assumed to be perpendicular to the line spacecraft-center of the Moon and pointing to the counter-clock-wise 
direction for a direct orbit and to the clock-wise direction for a retrograde orbit (see Fig. 2); 

v) To consider that an escape occurred, we request, following the conditions used by Yamakawa (1992), that the 
spacecraft reaches a distance of 100000 km (0.26 canonical units) from the center of the Moon in a time shorter than 50 
days. Figure 2 shows the point P where the escape occurs. The angle that specifies this point is called the "entry position 
angle" and it is designated with the letter β. 

First of all, this paper studies numerically the effects of the main parameters of the system. First, the values for the 
angle ψ is fixed in zero, α in 180° and C3 is assumed to have the values –0.6 (trajectory 1), –0.4 (trajectory 2), –0.2 
(trajectory 3), 0.0 (trajectory 4). The trajectories are shown in Fig. 3. As expected, trajectories that offers smaller values 
for the savings (C3 closer to zero) are closer to straight lines and trajectories that offers larges values for the savings (C3 
more negative) describes more loops and take more time to escape from the Moon in retrograde time. 
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Fig. 2 - Variables to specify the initial conditions of the 
spacecraft. 
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Fig. 3 – Trajectories for diferent values of C3. 

 
Then, the values for the angle ψ is fixed in zero, C3 in –0.4 and α is assumed to have the values 90° (trajectory 1), 

180° (trajectory 2), 270° (trajectory 3). The trajectories are shown in Fig. 4. They have different characteristics and time 
to reach gravitational capture. 

To verify the influence of the angle ψ four more simulations are made. The value of C3 is fixed in –0.15, α in 120° 
and ψ is varied in the values 0°, 90°, 180° and 270°. Figure 5 shows the four trajectories. The trajectories show that the 
spacecraft start in similar paths when close to the Moon, because the influence of the Sun is not very strong at this 
point, and then the trajectories deviate from each other, going to the direction of the Sun. It shows that the Sun start to 
have a very large effects in the trajectories when the spacecraft escape from the Moon. 
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Fig. 4 – Trajectories for diferent values of α. 
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Fig. 5 – Trajectories for diferent values of ψ. 

 
 

6. Analytical Analyses of the Forces 
 
To understand better the physical reasons of this phenomenon, it is useful to calculate the forces acting over the 

massless particle. Figure 6 shows the gravitational force gF
r

 of the Earth acting in a spacecraft M3 that is approaching 
the Moon and Fig. 7 shows the gravitational force of the Sun and the centrifugal force acting in the same situation. 
There is also the Coriolis force, given by vME

rr
×− −ω2 , where v

r
 is the velocity of the spacecraft. This force is not 

analyzed in detail because the main idea of this paper is to explain the ballistic gravitational capture as a result of 
perturbative forces acting in this direction and the Coriolis force acts perpendicular to the direction of motion of the 
spacecraft all the time. In this way, it does not contribute to the phenomenon studied here. The direction r

r
 points 

directly to the center of the Moon and the direction p
r

 is perpendicular to r
r

, pointing in the counter-clockwise 
direction. The distance between the spacecraft and the Earth is d, the angle formed by the line connecting the Earth to 
the spacecraft and the direction r

r
 is γ. The angle φ is used to define instantaneously the direction r

r
. From geometrical 

considerations shown in more detail in Prado (2002b), it is possible to write for the gravitational force: 
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For the centrifugal force the expression is (Prado, 2002b): 
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Fig. 6 – Gravitational force of the Earth. 
 

 
Fig. 7 – The gravitational force of the Sun and the 

centrifugal force. 
 



 

Now, it is necessary to develop an equivalent equation for the gravitational force of the Sun ( SF
r

). From Fig. 6, it is 

possible to find the following relations, where SrF
r

 stands for the radial component and FSp
r

 stands for the perpendicular 
component: 
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Those equantions can be used to find analytical equations for the radial and perpendicular components of the 

gravitational force of the Sun. More details can be found in Prado (2002a). 
During the approach phase, when the spacecraft is close to the Moon, the force that dominates the dynamics is due 

to the central body (the Moon). All others forces are perturbations on the motion of the massless particle. In the model 
considered here, the perturbations are due to the gravitational force of the Earth and the Sun and the centrifugal force 
due to the rotation of the system. In that way, an approach to understand the behavior of the perturbing forces is to study 
the components of each force during the approach phase. This study is performed in Prado (2002b), that shows an 
equation that relates the reduction of C3 with the integral of the forces over the time. 

The next step of this research is to use the analytical expressions derived in Prado (2002b) for the effects of the 
gravitational force of the Earth and the centrifugal force to obtain an equivalent equation for the gravitational force of 
the Sun, in order to obtain an estimate of the effects of the forces studied. The main idea is to estimate the potential of 
the field around the Moon to reduce the value of the C3 due to the Earth and the Sun and not to make predictions for a 
single trajectory. The analytical equations to measure the effects of this perturbation are derived under the assumption 
that the trajectory followed by the spacecraft is an idealized trajectory that does not deviate from the radial direction. 
The real trajectories are not radial, as can be seen in the references shown in this paper, but the equations derived under 
this assumption can be used to: i) estimate the values of the possible reductions in the value of C3; ii) show the existence 
of directions of motion that results in larger reductions of C3, so mapping analytically the decelerating field that exists 
in the neighborhood of the Moon; iii) estimate the effects of the periapsis distance and the size of the sphere of capture, 
since the equations derived are explicitly functions of those parameters; iv) to study the effect of the fourth body in the 
savings obtained in the gravitational capture. Another justification for the radial trajectories used to derive the equations 
is that the reduction of C3 is a result of the effects of the forces in time during the whole trajectory and, even for 
trajectories that shows several loops before arriving at the periapsis, during most of the time the trajectory can be seen 
as composed by a set of trajectories close to radial. 

For the derivation performed here, the component measured is the radial, because this is the direction of motion 
under the assumption used here. Then, assuming that the spacecraft is in free-fall (subject only to the gravitational and 
centrifugal forces) traveling with zero energy (parabolic trajectory) and that the trajectories do not deviate from a 
straight line, the result is: 
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Where ds is the space traveled by the particle during the time dt. To obtain the integral of the effect of the perturbing 

forces with respect to time, it is possible to perform the calculations in terms of the radial distance, by making the 
substitution: 
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The extreme points of the integration changes position (S0 by rmin and Sf by rmax) here and in all the following 

integrations to take into account that the positive sense of the radial direction points towards the Moon. Since the 
spacecraft is assumed to approach the Moon on a radial trajectory the result φ = α = β is valid, and the variable α is 



used as the independent parameter. Then, for the radial component of the Earth’s gravity, up to the first order, the 
integral is (Prado, 2002b): 
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For the radial component of the centrifugal force, the integral is (Prado, 2002b): 
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Repeating the process for the gravitational force due to the Sun, we have (Prado, 2002a): 
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For numerical simulations, the values used are: rmin = 1838/384400 (100 km above the lunar surface), rmax = 
100000/384400 (100000 km above the lunar surface, the usual value for the sphere of capture of the Moon in the 
ballistic gravitational capture studies), µ = 0.0121 (Earth-Moon system) and ( ) 2rr maxminq +=  (the medium point of 
the trajectory). 

The best result, regarding capture, occurs for α = ψ, that means that the spacecraft is aligned with the Sun, what is 
an expected result. Figure 8 shows the effects of the gravitational force of the Sun as a function of α and ψ. 
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orce of the Sun as a function of α and ψ (Prado, 2002a). 



 
Adding the radial effects of all the forces, the equation for the resultant force in the radial direction is obtained. This 

force will be called Fr(α). All the forces are plotted as a function of α in Fig. 9, for the case where ψ = 0. The numbers 
represents: 1 for the gravitational force due to the Earth; 2 for the centrifugal force; 3 for the gravitational force due to 
the Sun; 4 for the resultant force. From those results, it is clear that the integral of the total effect is always negative, 
which means that the spacecraft always has its velocity reduced by the perturbation. It is never increased. There are two 
points where the integral of the effect is null, which means that the two perturbing forces acting on the spacecraft cancel 
each other and it travels as if there were no perturbations at all. In this figure it is also possible to obtain the best point to 
perform the ballistic gravitational capture. This point is at α = 180°, which has the strongest accumulated effect for the 
resultant force. Figure 6 shows the perturbation of the fourth body F4b(α) in more detail, for the case where ψ = 0. 
Figure 7 shows the resultant forces acting in the motion of the spacecraft including and excluding the Sun. It is clear 
that the Sun helps to increase the effect of slowing down the spacecraft in a amount of the order of 3%.  
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7. Conclusion 
 
This paper studied the "gravitational capture" in the bi-circular restricted four-body problem by showing a survey of 

results related to this problem. Our numerical results showed some of the characteristics and concentrated in verifying 
the importance of the fourth body in this problem for Sun-Earth-Moon system.  

The analytical results showed an explanation of the phenomenon based in the calculation of the forces involved in 
the dynamics as a function of time and in its integration with respect to time. It also derived analytical equations to 
study the effect of the fourth body, under the assumption of radial motion. The forces acting in the spacecraft can slow 
down its motion, working opposite to its motion. This is equivalent to applying a continuous propulsion force against 
the motion of the spacecraft. In the radial direction the gravitational force due to the Earth and the centrifugal force 
work in opposite directions, but the resultant force always works against the motion of the spacecraft, with the 



exception of two points where they cancel each other. Understanding these behaviors explains why a particle with a 
velocity slower than the escape velocity can escape from the Moon. The results also showed that the inclusion of the 
Sun in the dynamics could increase by about 3% the effects of the forces. 
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