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Abstract. This work explores the capability of a two-mass model of the vocal folds to reproduce their oscillatory 
behavior during voice production by men, women, and children. The model includes airflow separation effects at the 
glottal exit and nonlinear characteristics of tissue viscoelasticity, and is coupled to a two-tube approximation of the 
vocal tract in configuration for vowel /a/. Male, female, and child configurations are implemented by scaling 
dimensions and biomechanical parameters according to available physiological data. Simulations are obtained by 
numerical solution of the equations, and using the subglottal pressure, neutral glottal area, and vocal fold stiffness as 
control parameters. In general, the results show good agreement with measured voiced records, with a clear hysteresis 
effect: the threshold conditions that start the oscillation are more restricted than those that stop it, as described by the 
subcritical Hopf bifurcation model for onset-offset proposed in previous studies. The results also show that the 
oscillation threshold conditions are more restricted for smaller larynges, in agreement with reported experimental 
data. 
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1. Introduction  
 

The purpose of this paper is to analyze how the oscillatory behavior of the vocal folds at phonation changes 
according to laryngeal size, in cases of phonation by men, women and children, and how it is controlled during speech 
by individual speakers. Since the several biomechanical parameters of the vocal folds, the interaction between the vocal 
folds and airflow, and other terms of glottal aerodynamics, depend on the anatomical dimensions of the glottis, 
variations of the oscillation dynamics as functions of those dimensions might be expected. Such variations might 
influence the strategies for controlling voicing onset and offset during speech by women vs. men (Lucero and Koenig, 
2000), and might be important to understand the development of motor control of the larynx in children (Lucero and 
Koenig, 2003). 

At the same time, it explores the capability of low dimensional vocal fold models to reproduce vocal fold vibration 
onset-offset patterns observed experimentally during speech. Past research has indicated that low-dimensional models, 
though simpler than the human larynx, still capture many significant aspects of vocal fold vibration for speech (e.g., 
Titze, 1994). In various experimental settings, it has been observed that the biomechanical configuration of the vocal 
folds at oscillation onset is different from their configuration at oscillation offset. For example, the subglottal pressure is 
higher at onset than offset (Titze, Schmidt, and Titze, 1995), the intraoral pressure is lower (Munhall, Löfqvist, and 
Scott Kelso, 1994), the airflow is lower (Koenig, 2000), and the glottal width is smaller (Hirose and Niimi, 1987). 
Using the qualitative theory of dynamical systems, this phenomenon has been described by an oscillation hysteresis 
model (Lucero, 1998, 1999). This model is built from the combination of a cyclic fold bifurcation for limit cycles, 
where a stable and an unstable limit cycle are generated, with a subcritical Hopf bifurcation, where the unstable limit 
cycle is absorbed. The former bifurcation corresponds to oscillation offset, and the latter to oscillation onset. Thus, 
onset and offset occur at different bifurcations, and consequently at  different values of the control parameters. 



In particular, the two-mass model of the vocal folds (Ishizaka and Flanagan, 1972) has been a useful representation 
for voice production studies. Besides its capability to produce realistic simulations of voice, its simplicity allows for 
analytical treatments of the oscillatory dynamics of the vocal folds. For example, it has been applied to studies of 
oscillation regions and phonation threshold conditions (Lucero, 1993; Mergell et al., 1998; Steineck and Herzel, 1995; 
de Vries et al, 2002), irregular and pathological vibrations (Herzel et al., 1995; Jiang and Zhang, 2002, Mergell, Herzel, 
and Titze, 2000; Steinecke and Herzel, 1995), voice registers (Lucero, 1996; Berry, 2001), oscillation hysteresis 
(Lucero, 2004), prosthesis design (Lous et al., 1998), among other several works.  

In our recent work, we have used a two-mass model to simulate speech production of adults (Lucero and Koenig, 
2000) and children (Lucero and Koenig, 2003) in the vicinity of an abduction gesture. There, an inverse dynamic 
approach was used, in which the model was fitted to collected speech records. The fit was performed by computing the 
time varying configuration of laryngeal parameters that best reproduce the given speech signal at the model output. Our 
purpose was to determine control strategies of voicing onset and offset used by speakers, and detect possible differences 
between female, male, and child speakers. The results showed that devoicing at the abduction-adduction gesture for /h/ 
is achieved by the combined action of vocal fold abduction, decrease of subglottal pressure, and increase of vocal fold 
tension. Each of these actions has the effect of inhibiting the vocal fold oscillation, and even suppressing it when 
reaching an offset threshold. Also, differences in oscillation regions between men and women were found. Women have 
in general more restricted conditions for the vocal fold oscillation, probably as consequence of their smaller laryngeal 
size. 

This paper intends to explore in more deep the relation of the vocal fold oscillation dynamics with laryngeal 
dimensions. The next sections will present the vocal fold model, and will explore its oscillatory behavior as a function 
of its size.  

 
2. Models 
 
2.1. Vocal folds 

 
The larynx is modeled using a modified version of the two-mass model of the vocal folds (Ishizaka and Flanagan, 

1972). Fig. 1 shows a sketch of the model. Each vocal fold is represented by two mass-damper-spring systems 
(m1−b1−k1 and m2−b2−k2), coupled through a spring (kc). The two vocal folds are assumed identical, and they move 
symmetrically with respect to the glottal midline, in the horizontal direction. 
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Figure 1. Two-mass model of the vocal folds (Ishizaka and Flanagan, 1972). 
 

When the glottis is open, the equations of motion may be written as 
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where bi, si, fi, with i = 1,2, denote the forces related to the tissue damping, elasticity, and the airflow, respectively, mi 
are the masses, and xi are their horizontal displacements measured from a rest (neutral) position. The tissue elastic 
forces have a cubic characteristics, of the form 
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where ki are stiffness coefficients. 



 

The stiffness coefficients and masses are computed through a Q scaling factor: ki = Qk0i, kc = Qk0c, and mi = m0i /Q. 
This Q factor may be regarded as a scaling factor for the natural frequencies of the model, and provides a convenient 
way to control the oscillation frequency. 

For the damping forces, instead of the usual linear term ii xr & , we adopted a nonlinear characteristics of the form 
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where ri and κ are coefficients. The reason was the need to limit the amplitude of the vocal fold oscillation, when the 
glottal width is increased. When a linear damping is used, an increase in the amplitude of the glottal pulses appears 
when the vocal folds are abducted (Lucero and Koenig, 2003; McGowan, Koenig, and Löfqvist, 1995). This effect does 
not appear in speech data, and is eliminated by the proposed nonlinear damping characteristics. The factor ri (1 + κ |xi|) 
acts as an equivalent damping coefficient, dependent on the displacement xi. Thus, it imposes a limit to the oscillation 
amplitude, by increasing the losses of the energy that fuels the oscillation, at large amplitudes. Note also that, at very 
low amplitudes (xi → 0) the damping factor approaches a linear characteristic. So, the threshold pressure and other 
conditions to start the vocal fold oscillation, which depend on the damping term, are not affected by its nonlinear part.  

Such nonlinear damping term is also in agreement with experimental data. It is known that the vocal fold tissue, and 
soft tissues in general, have strong nonlinearities in their viscoelastic properties (Alipour-Haghighi and Titze, 1985; 
Chan and Titze, 2000). More specifically, the data  show that the time constant of tissue relaxation curves increase with 
the level of strain imposed (Alipour-Haghighi and Titze, 1985). This result may be modeled by a damping factor which 
increases with strain, as in Eq. (3). Note that a linear damping term combined with the nonlinear stiffness in Eq. 2, 
which is the standard version of the two-mass model, would produce the opposite effect: relaxation curves with time 
constants that decreases with the level of strain. Here, as in our previous work, a value of κ = 150 is adopted, which was 
selected by inspection of the simulation results. 

The contact between the opposite vocal folds is modeled as in Ishizaka and Flanagan's work (1972). We assume that 
at their rest position, both masses are at a distance x0 from the glottal midline, and so each mass i collides with its 
opposite counterpart at a displacement xi = − x0. During contact, the stiffness is increased 
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and the damping coefficient ri is increased by adding 1 to the damping ratio ( )iiii mkr 2/=ξ . 

 
2.2. Glottal and vocal tract aerodynamics 

 
The glottal aerodynamics, for the open glottis, is modeled using a version of Ishizaka and Flanagan's equations 

(1972), updated with experimental results and a simplified version of the boundary layer model (Pelorson et al., 1994, 
1995) 

Letting the subglottal pressure be Ps, then the drop to pressure P11 at the glottal entry  is, according to Bernoulli's 
equation, 
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where ρ is the air density, ug is the volume velocity of glottal airflow, a1 = 2lg (x1 + x0) is the cross-sectional lower 
glottal area, and lg is the vocal fold length. Note that, contrary to Ishizaka and Flanagan (1972), flow contraction (vena 
contracta) is not considered, following Pelorson et al. (1995). 

Along mass m1, pressure drops to a value P12 due to air viscosity, given by: 
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where µ is the air viscosity, and d1 is the width of mass m1. 

Two cases must be considered next, according to the glottal shape. Let us consider first the case in which the glottis 
is convergent or slightly divergent, i.e., a1 > ksa 2, where ks > 1 is a suitable constant, and a2 = 2lg (x2 + x0) is the cross-
sectional upper glottal area. At the boundary between both masses there is a pressure variation, given by 
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where P21 is the air pressure at the lower edge of mass m2. Next, there is a pressure drop along mass m2 due to air 
viscosity, similar to Eq. (6) 
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where P22 is the pressure at the glottal exit. At this point, and due to the abrupt area expansion, the flow detaches from 
the glottal wall and forms a jet stream. We assume that all energy is lost in the stream due to turbulence (Pelorson et al., 
1994), and so P22 = Po,where Po is the pressure input to the vocal tract. 

When the glottis is more divergent, with a1 ≥ ks a2, we assume that the point of flow separation from the glottal wall 
moves inside the glottis and occurs at the boundary between both masses. This is a gross simplification of the boundary 
layer model (Pelorson et al, 1994, 1995), which shows that the point of flow separation moves upstream the glottis as a 
continuous function of the glottal angle of divergence, and becomes asymptotically constant at high Reynolds numbers. 
As in our previous works (Lucero, 1999; Lucero and Koenig, 2000, 2003), we adopt a value ks = 1.2 for the asymptotic 
constant. In this case, we assume again that all airflow energy is lost due to turbulence from the point of detachment, 
and so we let P21 = P22 = Po. 

Finally, the forces fi acting on the masses are computed as fi = (Pi1 + Pi2)/2. 
The forces for the case of glottal closure are computed as follows (Ishizaka and Flanagan, 1972) 
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The vocal tract was represented by a standard two-tube configuration for vowel /a/ (Flanagan, 1972; Titze, 1994), 

shown in Fig. 2. Its equations were derived using a transmission line analogy, terminated in a radiation load of a circular 
piston in an infinite baffle. The elements of the transmission line were computed from the cross-sectional areas S1, S2 
and lengths L1, L2 of the vocal tract tubes, using the standard equations of the analogy (Flanagan, 1972; Ishizaka and 
Flanagan , 1972). 
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Figure 2. Vocal tract model for vowel /a/ (Titze, 1994). 
 

2.3. Dimension scaling and control parameters 
 
The following values were adopted for a standard male configuration of the vocal fold and vocal tract models 

(Flanagan, 1972; Ishizaka and Flanagan, 1972): m01 = 0.125 g, m02 = 0.025 g, k0c = 25 N/m, k01 = 80 N/m, k02 = 8 N/m, ξ 1 

= 0.1, ξ 2 = 0.6, lg = 1.4 cm, d1 = 0.25 cm, d2 = 0.05 cm, x0 = 0.02 cm, Ps = 800 Pa, Q = 1, S1 = 1 cm2, S2 = 7 cm2, L1 = 8.9 
cm, L2 = 8.1 cm. 

To control the model dimensions, a single scaling factor β  for all dimensions is used. This is a simplification of the 
actual size variations of the larynx and vocal tract. According to Titze (1989), two main scaling factors for the size 
relation between male and female larynges may be identified, depending on the specific dimension. The relative lengths 
between the pharynx and oral cavity also differs for men, women, and children. Here, the single factor β was adopted as 
a convenient and simple way to control the overall size of the model. This strategy is in agreement with the objective of 
this study, which is to achieve a general understanding of how the vocal fold oscillatory behavior depends on their size, 
and not to obtain detailed simulations of vocal output. Thus, an adult female configuration would correspond to an 
approximate  factor of β = 0.72 (according to data by Titze, 1989), and a 5-year-old configuration to β = 0.64 
(according to data by Goldstein, 1980). 

All linear dimensions are then scaled by multiplying by β. Masses were accordingly computed by multiplying by β 3, 
to compensate the volume increase. For the tissue stiffness, we assumed a constant elasticity modulus for all sizes. This 
assumption is again a simplification, since Titze (1989) reported slightly stiffer tissue for females than for males, 
probably as a result of differences in tissue composition. Similar differences between child and adult tissues have also 
been reported (Kurita, Hirano, and Nakashima, 1983). For a constant elasticity modulus, the stiffness coefficient is 



 

directly proportional to the cross-sectional area of the tissues, and inversely proportional to their length. Hence, the 
scaling of all dimensions by a factor β  implies that stiffness is also scaled by this same factor. For the tissue damping, 
we assumed a constant damping ratio for all sizes.  

 
3. Preliminary theory 

 
The dynamics of the two-mass model in the vicinity of its rest position has been analyzed in previous studies (e.g., 

Lucero, 1993; Steinecke and Herzel, 1995). Let us briefly recall that the stability of that position may be determined by 
taking the linear part of the equations of motion in its vicinity. Simplifying the equations by neglecting losses by air 
viscosity, and assuming that the load presented by the vocal tract to the vocal folds is negligible (i.e., setting Po = 0), we 
find and equilibrium position (rest position) at x1 = x2 = 0. The linearized differential equations of the two-mass model 
around that position, are: 
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where we have already introduced the Q factor and the scaling coefficient β. Its characteristic equation is  
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Writing the above equation as s4 + a1s

3 + a2s
2 + a3s +a4 = 0, it may be shown that a pair of complex roots cross the 

imaginary axis from left to right when a1a2a3 – a1a3 – a1
2a4 = 0 (Lucero, 1993). This fact signals the occurrence of a 

Hopf bifurcation, at which the rest position becomes unstable and a limit cycle is produced, and determines the onset 
threshold of the vocal fold oscillation.  

Here, we want to analyze how the oscillation onset condition depends on the subglottal pressure Ps, the glottal half-
width at the rest position of the vocal folds x0, the Q factor, and the scaling factor β. The glottal half-width characterizes 
the degree of abduction-adduction of the vocal folds and is one of the major parameters for controlling their oscillation 
onset-offset. The Q factor represents the degree of tension of the vocal folds, and is the main control for the 
fundamental frequency of the vocal fold oscillation. The subglottal pressure is a main control for the amplitude of the 
oscillation, and thus for voice intensity.  

Replacing the coefficient values from Eq. (12) into the onset threshold condition, it may be shown that it is 
independent of the individual values of the above four parameters, when keeping constant the relation 
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where C denotes a constant (the demonstration is straightforward and therefore is omitted here). For example, for the 
standard parameters we obtain  C = 1.1049 × 106 N/m3. Equation (14) tells that, for smaller larynges (smaller values of 
β), the threshold value of the subglottal pressure to start the vocal fold oscillation must be higher (larger Ps), the vocal 
folds must be driven closer together (smaller x0, or larger adduction), and the tension of the tissues must be smaller 
(smaller Q). Let us note that this conclusion is not related to the existence of any losses due to air viscosity; in fact, such 
losses were neglected at the start of this analysis. Looking at the above equations, we may note that factor β appears in 
Eq. (14) due to the reduction in the medial surface of mass m1, on which the air pressure acts (if this surface was 
constant, then the previous conclusions would be just the opposite). This is an important result, which shows that 
smaller larynges might have more restricted phonation regions simply because their glottal surface is smaller, and so 
they absorb less energy from the airflow to fuel the vocal fold oscillation. The restriction is not necessarily caused by  a 
larger glottal resistance to the airflow, although this might be a significant additional factor. 
 
 
 
 



4. Simulation results 
 

Figure 3 shows plots of simulated oral airflow, as an example of the model’s output. The simulations were obtain by 
varying the glottal half-width from 0.02 cm to 0.1 cm, and then back to the original value, following a sinusoidal 
pattern. This variation pattern imitates the glottal abduction-adduction gesture during the production of utterance /aha/ 
in running speech (see Lucero and Koenig, 2000, 2003). All other parameters were kept fixed at their standard values.     
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Figure 3. Oral airflow patterns during a vocal fold abduction-adduction gesture. Top: β = 1 (male adult), middle: β = 
0.71 (female adult), bottom: β = 0.64 (5-year-old child). 

 
Comparing the plots, we see that the male flow has larger amplitude and lower fundamental frequency 

(approximately 123 Hz, 165 Hz, 187 Hz, from top to bottom), as expected. In the female case, the glottal pulses stop at 
the peak abduction, and restart at the end of the following adduction. This is a clear oscillation hysteresis phenomenon, 
discussed in the Introduction, in which the vocal fold oscillation stops and starts at different values of the glottal width. 
In the child case, the glottal pulses stop even earlier than the female case, at a lower value of the glottal width. The plots 
clearly show that the oscillation region becomes more restricted as the laryngeal size decreases. Similar results may be 
obtained when varying the other two main parameters, the subglottal pressure Ps and the Q  factor. 
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Figure 4. Oscillation threshold values of subglottal pressure 
 

The next plots show the threshold conditions of parameters as function of the scaling factor β. Let us consider first 
the subglottal pressure thresholds (Fig. 4). Simulations of vocal fold oscillation were performed, while varying the 
subglottal pressure from 0 to 1000 Pa, and back to 0, following a sinusoidal curve (similar to Fig.3). The simulated 
glottal airflow was next low-pass filtered at a 50 Hz cut-off to eliminate glottal pulses, using a sixth order Butterworth 



 

filter. The AC flow component was next computed as the difference between the unfiltered airflow and the filtered 
result. From the AC component, we computed next the rms amplitude, using a zero-crossing algorithm with low pass 
filtering (Titze and Liang, 1993) to identify the individual cycles. The oscillation onset was determined as the instant of 
time at which the rms flow amplitude increased above a threshold value of 1 cm3/s. Similarly, the offset was determined 
as the instant of time at which the rms flow decreased below 1 cm3/s.  Identification of the onset threshold is in general 
an easy task, because the oscillation builds up quickly at that point. The offset threshold, on the other hand, is more 
difficult and imprecise, because the oscillation amplitude tends to vanish slowly, and it is not clear at which point the 
rest position has become a stable equilibrium point (Lucero, 2004). However, our objective here is to see how the 
threshold vary for different laryngeal sizes, and the above criterion suffices     

In Fig. 4, we can see that there are two different values of the thresholds, one for onset, and a lower value for offset. 
The existence of such two thresholds confirms again the occurrence of an oscillation hysteresis phenomenon (Lucero, 
1999). Both thresholds increase when the larynx size is reduced, as predicted by Eq. (14).  

Figures 5 show the glottal half-with threshold. Again, we note the existence of two thresholds, with the onset one 
smaller than the offset. This mean that to start the oscillation, the vocal folds must be adducted closer together than the 
position at which oscillation stops, as shown in the simulations in Fig. 3. Also, we note that both thresholds decrease 
with the laryngeal size. 
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Figure 5. Oscillation threshold values of glottal half-width. 
 

Finally, Fig. 6 shows the threshold values of Q factor, with similar results than the other parameters. Such results 
suggest the possibility of using the Q factor (vocal fold tension) to control the onset and offset of the oscillation. In fact, 
past studies have argued that the cricothyroid muscle may be activated around abduction movements to help suppress 
the vocal fold oscillation (Löfqvist et al., 1989) 
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Figure 6. Oscillation threshold values of Q factor. 
 



In the three plots above, the thresholds vary with laryngeal size always in the sense of restricting the vocal fold 
oscillation region for smaller sizes. 

 
5. Conclusions 
 

In general, the results show that the dynamics of the vocal fold oscillation depends on laryngeal size, and thus varies 
for men, women, and children. For all parameters studied here, the oscillation conditions become more restricted as the 
size is reduced. This restriction seems consequence of a reduction of the glottal area in contact with the airflow, on 
which energy is transferred from the flow to fuel the vocal fold oscillation. This result would explain the larger 
occurrence of devoicing in glottal abduction-adduction gestures, compared to men (Koenig, 2000). In the child cases, 
the restricted conditions would result in the higher values of subglottal pressures, compared to adults, as observed 
experimentally (Lucero and Koenig, 2003). A hysteresis effect is always present at voice onset-offset, with threshold 
conditions to start the vocal fold oscillation more severe than those to stop it, as described by the subcritical Hopf 
bifurcation model.  
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