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Abstract. In this work, the central pattern generator (CPG), responsible for the production of rhythmic movements, is
formed of a set of mutually coupled nonlinear oscillators of van der Pol. From a model of two-dimensional robot,
oscillators with integer ratio of frequency were used for simulating the behavior of the hip angle and of the knees
angles. Each oscillator has its own parameters and the link to the other oscillators is made through coupling terms.
The objective of this work is to analyze the dynamics of this coupled oscillators system by using bifurcation diagrams
and Poincaré maps. By means of the analysis and graphs generated in MATLAB®, it was possible to evaluate some
characteristics of the system, such as: sensitivity to the initial conditions, presence of strange attractors and other
phenomena of the chaos, such as “crisis”. Based on the results of the study, we conclude that although the use of
coupled oscillators represents an excellent way for generating pattern signals of locomotion, its application in the
control of a bipedal robot will only be possible with the correct choice of parameters, which must be done from the
data provided by the analysis of bifurcation and chaos.
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1. Introduction

The study of mechanisms that perform motor functions, in special, the study of mechanical members, intends not
only construct autonomous robots, but also to help in the rehabilitation of people who have suffered some accident. The
study of the locomotion is inserted in this context, and this has been intensively studied since the second half of century
XX. An ample vision of the state of the technique up to 1990 can be found in works as Raibert (1986) and Vukobratovic
et al. (1990).

In the course of many years the human being has been trying, in all forms, to recreate the complex mechanisms that
form the human body. Such task is extremely complicated and the results are frequently unsatisfactory. However, with
the greater technological advances each time, based on theoretical and experimental researches, the man gets, in a way,
to copy or to imitate some systems of the human body. It is the case, for example, of the central pattern generator
(CPG), responsible for the production of rhythmic movements, such as to swim, to walk, and to jump, that it can be
modeled by means of mutually coupled nonlinear oscillators. There are some significant works about the locomotion of
vertebrates controlled by central pattern generators. Amongst them, Grillner (1985), Collins and Stewart (1993), and
Pearson (1993) are very important.

The human locomotion is partially controlled by a CPG, what can be evidenced in works such as Calancie et al.
(1994) and Dimitrijevic et al. (1998). A correctly projected CPG can generate trajectories of reference for locomotion
and can be used in the control of bipedal robots. In this work the CPG is formed of a set of mutually coupled nonlinear
oscillators, in which each oscillator generates angular signals of reference for the movement of the legs. Each oscillator
has its proper amplitude, frequency and parameters, and the linking to the other oscillators is made through the choice
of coupling terms. We intend to evaluate the use of van der Pol oscillators. Some previous works about CPGs formed
by van der Pol oscillators, applied in the locomotion of bipedal robots, can be seen in Bay and Hemami (1987), Dutra
(1995), Zielinska (1996), Dutra et al. (2003) and Pina Filho (2004).

The objective of the this work is to analyze the dynamics of this coupled oscillators system by using bifurcation
diagrams and Poincaré maps. By means of the analysis and graphs generated in MATLAB®, it was possible to evaluate
some characteristics of the system, such as: sensitivity to the initial conditions, presence of strange attractors and other
phenomena of the chaos, such as “crisis”.



2. Oscillator of van der Pol

Balthazar van der Pol (1889-1959) was a Dutch engineer who made dynamic experimental studies in the beginning
of century XX. He investigated electric circuits using vacuum tubes and verified that the circuits presented stable
oscillations, later called limit cycles. Together with his colleague van der Mark, he was one of the first researchers to
present an article with experimental studies about chaos. He also made some studies about the human heart,
constructing models with the objective of studying the dynamical stability. More details about the work of van der Pol
can be found in the site http://www.exploratorium.edu.

The equation of van der Pol that will be used in the analysis is:
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where ε, p and Ω correspond to the parameters of the oscillator. Details and discussions about the equation of van der
Pol, considering even force terms, can be seen in Jackson (1990) and Strogatz (1994).

3. Coupling of the oscillators

Systems of coupled oscillators have been used extensively in studies of physiological and biochemical modeling.
Since the years of 1960, many researchers have studied the case of coupling between two oscillators, because this study
is the basis to understand the phenomenon in a great number of coupled oscillators. In their works, French (1971) and
Gaitskell (2002) present simpler analyses of the coupling between two linear systems mass-spring. Amongst other
works about this subject, there can be cited Kozlowski et al. (1995) and more recently Wirkus and Rand (2002).

One of the types of oscillators that can be used in coupled systems is the auto-excited ones, which have a stable limit
cycle without external forces. These will be the oscillators used in the analyses presented here. In relation to the type of
coupling, considering a set of n oscillators, there are three basic schemes of coupling (Low and Reinhall, 2001). Figure
1 presents these schemes, knowing that the last configuration of coupling will be used in the analyses, since we want
that each one of the oscillators has influence on the others.

(a) (b) (c)

Figure 1. Basic schemes of coupling of oscillators: in ring (a), in chain (b) and mutually coupled (c).

Considering a net of n coupled van der Pol oscillators, from Eq. (1) and adding coupling terms that relate the
velocities of the oscillators, we have:
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which represents coupling between oscillators with the same frequency, where θ corresponds to the degrees of freedom
of the system. In the case of coupling between oscillators with integer relation of frequency, the equation would be:

( )[ ] ( ) ( )[ ] ( ) 0 1
1

,
1

,
22 =−−−−−Ω+−−− ∑∑

==

n

k
khkh

m

i
ioiiihhohhhhohhhh ccp θθθθθθθθθθεθ &&&&&& (3)

where the nonlinear term ( )][, ioiiihc θθθ −&  is responsible for the coupling between oscillators with different frequencies,

while the term ( )khkhc θθ && −, , also seen in Eq. (2), makes coupling between oscillators with the same frequency. Both
terms were defined by Dutra (1995).
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3.1. Application of coupling in bipedal robot

Consider the model presented in Fig. 2. The angle of the hip θ4 and the angles of the knees θ3 and θ5 will be
determined by the system of coupled oscillators. The other angles are calculated by equations determined by the
kinematical analysis of the mechanism. In this work we will not present details of this analysis, which can be seen in
Pina Filho (2004). Besides the angles we have: xt and yt, which are the coordinates of the tip of the foot; ls is the length
of the part of the foot responsible for the support (toes); lp is the length of the part of the foot that raises from the
ground (sole); lt is the length of the tibia; and lf is the length of the femur.

Figure 2. Model of the bipedal robot to be analyzed and structure of coupling between the oscillators.

Experimental studies of human locomotion (Braune and Fischer, 1987, and Raptopoulos, 2003) and of Fourier
analysis of these data (Dutra, 1995) show that the movements of the angles θ3, θ4 and θ5 can be described very precisely
by their fundamental harmonic, whether the biped is in the double support phase, with the two feet on the ground, or in
single support phase, with only one foot touching the ground.

The generation of the angles θ3, θ4 and θ5 as a periodic attractor of a nonlinear net was intended, a set of three
coupled oscillators have been used. These oscillators are mutually coupled by terms that determine the influence of an
oscillator on the other oscillators, as seen in the Fig. (2). The lesser the value of these coupling terms is, the weaker is
the relation between the oscillators.

Applying Eqs. (2) and (3) to the proposed problem, knowing that the frequency of θ3 and θ5 (angles of the knees) is
the double of θ4 (angle of the hip), one has the following equations:
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From Eqs. (4)-(6), using the parameters shown in Tab. 1 together with values supplied by Dutra et al. (2003), there
have been generated the graphs in MATLAB® shown in Fig. 3, which present, respectively, the behavior of the angles
in function of time and the stable limit cycles of the oscillators.
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Table 1. Parameters of van der Pol oscillators.
c3,4 c4,3 c3,5 c5,3 c4,5 c5,4 ε3 ε4 ε5

0.001 0.001 0.1 0.1 0.001 0.001 0.01 0.1 0.01
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The influence of a given parameter in the response of a system can be identified by means of the bifurcation
diagrams, which present the stroboscopic distribution of the system response from a slow variation of a given parameter
(Thompsom and Stewart, 1986). This was the method applied here, which implies to simulate different parameter
values that we want to analyze, evaluating the type of response in the section of Poincaré.

Figure 4. Section of Poincaré in a three-dimensional phase space (Moon, 1998).

4.3. Analysis and results

Considering different values for the parameters ε3, ε4 and ε5, the tests have been performed using the MATLAB® to
generate the bifurcation diagrams and Poincaré maps. In principle, keeping values of ε4 = 0.1 and ε5 = 0.01, the value of
ε3 was varied from 0 up to 10. All the other values of the system have been kept. Figure 5 presents the bifurcation
diagram showing the behavior of the oscillator of the knee (θ3) from the variation of the parameter ε3, which represents
the term of damping related with this oscillator.

Figure 5. Bifurcation diagram for θ3 with variation of ε3.
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Observe that a chaotic regime is already configured when ε3 = 2. It is interesting to notice also that when ε3 = 8 the
regime is not chaotic anymore and starts to present a period-2 response, later returning to the chaotic regime. Sensitivity
to the initial conditions can be verified considering two simulations with different conditions, for example, with ε3 = 3
(chaotic regime), choosing initial values for the angles: θ3 = 3º, θ4 = 50º, θ5 = −3º, and then changing θ3 = 3.001º, it can
be observed the influence of the initial conditions in the system response (Fig. 6).
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Figure 8. Bifurcation diagram for θ5 with variation of ε3.

Figure 9 presents the bifurcation diagram showing the behavior of the hip oscillator (θ4) from the variation of the
parameter ε3. In this case, we observe that the influence of the knee oscillator (θ3) on the hip (θ4) is small, since the
behavior of θ4 does not suffer many alterations. This result was already expected due to the small value of the coupling
term between the oscillators (c34 = c43 = 0.001). In relation to the knees, the coupling term is much greater
(c35 = c53 = 0.1), configuring a more significant influence.

Figure 9. Bifurcation diagram for θ4 with variation of ε3.

In analogous form to what was made for ε3, the response of the system can be analyzed by varying the values of ε4
(from 0 up to 10) and keeping the other values fixed. Figure 10 presents the bifurcation diagram showing the behavior
of the hip oscillator (θ4) from the variation of the parameter ε4, which represents the term of damping related with this
oscillator. Figure 11 presents the strange attractor generated in the analysis of this oscillator.

As seen previously in the analysis of ε3, the influence of the hip on the knees is small, then a variation of ε4 does not
bring about great changes in θ3 and θ5.
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Figure 10. Bifurcation diagram
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Figure 12. Bifurcation diagram for θ5 with variation of ε5.

Figure 13. Strange attractor for θ5.

Figure 14. Bifurcation diagram for θ3 with variation of ε5.
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5. Conclusion

From presented results and their analysis and discussion, we come to the following conclusions: the use of mutually
coupled nonlinear oscillators of van der Pol can represent an excellent form generating locomotion pattern signals,
allowing its application for the control of bipedal robot by the synchronization and coordination of the legs, once the
choice of parameters is correct, which must be made from the data supplied for the analysis of bifurcation and chaos.
Through the dynamic analysis it was possible to evidence a weak point of coupling systems. The influence of the
oscillators of the knees on the hip, and vice versa, is very small, what can harm the functionality of the system, i.e. if
one of the knees suffers some disturbance, it will be automatically felt by the other knee, but it is possible that no
reaction occurs in the hip. The solution for this problem seems immediate: to increase the value of the coupling term
between the hip and the knees. However, a fast test proves that this can make the system unstable. Then, it is necessary
a more refined study of the problem.
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