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Abstract. Acoustic intensity is one of the available tools for evaluating sound radiation from vibrating bodies.
Active intensity may, in some situations, not give a faithful insight about how much energy is in fact carried into
the far ¯eld. It was then proposed a new parameter, the supersonic acoustic intensity, which takes into account
only the intensity generated by components having a smaller wavenumber than the acoustic one. However, the
method is only efective for simple sources, such as plane plates, cylinders and spheres. This work presents a
new technique, based on the Boundary Elements Method and the Singular Value Decomposition, to compute the
supersonic acoustic intensity for arbitrarily shaped sources. The technique is based in the Kircho®-Helmholtz
equation in a discretized approach, leading to a radiation operator that relates the normal velocity on the source's
surface mesh with the pressure at grid points located in the ¯eld. Then, the singular value decomposition technique
is set to the radiation operator and a cuto® criterion is applied to remove non propagating components. Some
numerical examples are presented.
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1. Introduction

Acoustic radiation is a broadly covered subject in the literature. One of its branches is the so-called source
localization, or backpropagation problem. Since the ¯rst published works, like those of Stepanishen and Ben-
jamim (1982), Maynard, Williams and Lee (1985) and Sarkissian (1992), among others, the existence of an
important source of error, caused by the existence of evanescent waves present in the spatial spectrum of the
sound pressure is mentioned and some methods like the wavenumber domain ¯ltering (Maynard, Williams and
Lee 1985) were proposed to decrease their in°uences on the backpropagated ¯eld. The evanescent waves do
not have any signi¯cant contribution to the overall sound power, since their in°uence decays in an exponential
fashion with the distance to the source. If, instead of the backpropagation problem, one is interested in under-
standing how a particular source generates sound power, an interesting approach would be to somehow ¯lter
the source normal velocity so that the part of its spatial spectrum that produces evanescent waves is deleted.
The truncated spectrum that is left after the suppression will then contain only components that do contribute
to sound power. This idea, ¯rst outlined by Borgiotti (1990), Borgiotti and Rosen (1992), and Borgiotti and
Jones (1993), is the base from which the concept of supersonic intensity, presented by Williams (1995, 1998), is
developed.
Acoustic intensity is the most usually employed quantity when sound radiation analysis is concerned. A

trap is however hidden behind the frequencies lower than a local coincidence criterion. Williams (1995), based
on a spatial Fourier analysis of the sound ¯eld generated by cylindrical radiators, shows that the interaction
between components with wavelength shorter than the acoustic one (called subsonic components), which gen-
erate evanescent waves, can indeed generate a not negligible amount of active intensity. The strategy proposed
is then to discard the in°uence of those components so that a new quantity, referred to as supersonic acoustic
intensity, that faithfully describes how much energy is in fact transported to the far-¯eld, can be extracted
either from sound intensity measurements or numerical simulation. In a later work, Williams (1998) details
of the evaluation of supersonic acoustic intensity for planar radiators, showing the relationship between the
interaction between supersonic components and the active intensity are given.
The wavenumber domain approach used in (Williams, 1995, 1998) is, however, not applicable in cases where

the source geometry is not separable in any suitable coordinate system. For these cases, an alternative approach,
whose some of the initial ideas were outlined by Williams (2000), is then to use the Kircho®-Helmholtz integral
equation (Pierce, 1991, Morse and Ingard, 1968) to obtain a radiation operator relating the source normal
vibration velocity and the sound pressure ¯eld. In this work, the Kircho®-Helmholtz equation is discretized
so as to allow the representation of the radiation operator as a matrix which, in its turn, represents a linear
transform between the vector of source normal velocity values at some points and the pressure on a set of grid
points located in the °uid medium that surrounds the source. The basic idea is to discard the lowest singular
values present in the singular value decomposition (SVD) of the radiation operator, which are well-known
(Borgiotti, 1990, Borgiotti and Jones, 1993, Veronesi and Maynard, 1989, Photiadis, 1990) to be related to very
ine±cient radiation modes.
Some interesting questions arise when the Kircho®-Helmholtz equation is used. In this case, for instance,

there is not a clear distinction between propagating and non propagating components. This can cause signi¯cant
errors in the evaluation of the generalized supersonic intensity if a smart cuto® criterion is not used. This work
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presents a proposal of such a criterion based on the convergence of the sound power with respect to the number
of singular values taken into account in the supersonic intensity evaluation.

2. Wavenumber domain approach

In the case the sound source geometry is separable in a suitable coordinates system, the most adequate
approach is the one based on the spatial Fourier transform, also known as the wavenumber domain approach
(Stepanishen and Benjamim, 1982, Maynard, Williams and Lee, 1985, Williams, 2002). The basic idea is to use
the spatially Fourier-transformed versions of both sound pressure and velocity on the surface of the source. In
the sequel, for the sake of simplicity, only the case of a planar source lying on the plan z = 0 will be dealt with.
In this case, the pressure and velocity can be written as

p̂(x; y; 0; !) =

Z 1

¡1

Z 1

¡1
~p(kx; ky; 0; !)e

i(kxx+kyy) dkx dky; (1)

v̂(x; y; 0; !) =

Z 1

¡1

Z 1

¡1
~v(kx; ky; 0; !)e

i(kxx+kyy) dkx dky; (2)

where p̂ is the pressure in the frequency domain and ~p is the pressure in the wavenumber domain, also called
the angular spectrum of p̂; v̂ and ~v, in the same manner, represent the velocity in frequency and wave-number
domains, with kx and ky being the wave-numbers in x and y directions. If one assumes that the planar source
is located on the plane z = 0, the relationship between the angular spectra of the pressure at any given plane
parallel to the source and the angular spectrum of its normal velocity is given by (Williams, 2000)

~p(kx; ky; z; !) =
½0ck~vn
kz

eikzz; (3)

where k2z = k2 ¡ k2x ¡ k2y and ~vn is the angular spectrum of the velocity component on the normal direction
(z). In order to obtain the frequency spectrum of the pressure ¯eld one can then use the inverse spatial Fourier
transform,

p̂(x; y; z; !) = F¡1
·
½0ck~vn
kz

eikzz
¸
; (4)

where the operator F¡1 denotes the inverse Fourier transform. If one wants to eliminate those wavelengths
that originate evanescent waves, no (kx,ky) pair lying outside the radiation circle Sr de¯ned by k

2
x + k

2
y < k

2

should be taken into account during sound intensity evaluation. The strategy proposed by Williams (1995) is to
perform the integrations contained in Eqs. (1{2) only within the radiation circle, therefore obtaining modi¯ed
versions of pressure and velocity on the source surface, containing only radiating (supersonic) wavelengths.
These versions, termed supersonic velocity and supersonic pressure are then de¯ned as

p̂(s)(x; y; 0; !) =

Z
Sr

Z
Sr

~p(kx; ky; 0; !)e
i(kxx+kyy) dkx dky; (5)

v̂(s)(x; y; 0; !) =

Z
Sr

Z
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~v(kx; ky; 0; !)e
i(kxx+kyy) dkx dky; (6)

with the superscript (s) denoting supersonic quantities. It is now possible to obtain the so-called supersonic
intensity by multiplying the supersonic pressure by the complex conjugate of the supersonic velocity, which
yields

Î(s)(x; y; 0; !) =
1

2
Re[p̂(s)(x; y; 0; !)v̂¤(s)(x; y; 0; !)]: (7)

It can be shown (Williams, 1995, 1999) that the sound power obtained by integrating the supersonic intensity
over the entire source surface is equal to the one obtained by doing the same process with the conventional
active intensity.

3. Kircho®-Helmholtz equation approach

Let − be the °uid domain in which the source, whose interior is denoted by −i, is immerse, xs an arbitrary
point on its boundary ¡ and x an arbitrary point in −. The relationship between the normal velocity and the
acoustic pressure, in the frequency domain, is given by (Ciskowski and Brebbia, 1991, Pierce, 1991)

cp̂(x; !) =

Z
¡

µ
i!½0v̂n(xs; !)G(xsjx)¡ p̂(xs; !)@G(xsjx)

@ns

¶
dxs; (8)



with c = 0 for x 2 −i, c = 1 for x 2 −, and c = ®=2¼ for x 2 ¡, where ¡ is the source boundary, whose
inward-pointing normal is ns, ! is the angular frequency, ½0 is the °uid density, v̂n is the normal component of
the source boundary velocity, p̂ is the acoustic pressure at an arbitrary point and ® the solid angle de¯ned by
any non-smoothness that may exist on ¡, that is, if the boundary is smooth, then ® = ¼ and c = 0:5. G(xsjx)
is the free-¯eld Green function, given by

G(xsjx) = eikjxs¡xj

4¼jxs ¡ xj : (9)

It is important to notice that, in order to obtain the sound pressure at any point located in −, one must
¯rst evaluate it on the source boundary ¡, that is, Eq. (8) must be solved with c = 0:5 (assuming a smooth
boundary). Only after that can Eq. (8) be solved with c = 1. If ¡ is discretized using boundary elements, these
steps can be approached as matrix operations. While solving for the pressure on ¡ one has,

Hp̂ =Gv̂; (10)

whereH is a matrix containing integrals of the product of the normal derivative of the Green function by each of
the boundary elements interpolation functions, p̂ is a vector containing pressure values at each of the boundary
nodes, G is a matrix containing integrals of the product of the Green function by the elements interpolation
functions and v̂ is a vector containing values of the normal component of the boundary velocity (Ciskowski and
Brebbia, 1991, Wu, 2000). Once Eq. (10) is solved for p̂, the pressure anywhere on − can be obtained using the
discretized version of Eq. (8),

p̂− = Gv̂ ¡Hp̂; (11)

where the matrices G and H have the same structure of matrices G and H, with the di®erence that the Green
functions are now evaluated between points in − and points on ¡. p̂− is a vector containing pressure values
at the desired points in −. Replacing Eq. (10) in Eq. (11) one obtains an expression that relates directly the
source boundary vibration velocity to the sound pressure at the ¯eld points in −,

p̂− =
¡G ¡HH¡1G

¢
v̂: (12)

The term (G ¡HH¡1G) can be though of as being a radiation operator in discretized form and will be denoted
in the sequel as R. In the next section an approach will be described in order to dissect the radiation operator
and identify the components which do inject a signi¯cant amount of energy into the far-¯eld.

4. Supersonic intensity for abitrarily shaped sources

The basic idea for evaluating the supersonic intensity for arbitrarily shaped sources is to use the SVD (Golub
and VanLoan, 1996, Borgiotti, 1990) of the radiation operator, that is, to rewrite it as

R = U§VH ; (13)

whereU is aM£M matrix, § is aM£N diagonal matrix whose elements, always non-negative and decreasingly
ordered, are referred to as the singular values of R and V is a N £ N matrix. The superscript H denotes
conjugate transpose. Some of the features of the SVD are of great importance for its application on sound
radiation problems. For instance, the columns of V form an orthonormal basis for the domain of R, while the
columns of U span the column space of R. The columns of V are termed by Borgiotti (1990) singular velocity
patterns.
The singular values of R play an important role in the structure of the radiation operator. Writing Eq. (13)

in an alternative form (Borgiotti, 1990)

R =
NX
i=1

¾iUiV
H
i ; (14)

where Ui are the columns of U and V Hi the lines of VH , it is noticed that the i¡th singular value ¾i multiplies
the i¡ th line of VH , which, in its turn, corresponds to the i¡ th singular velocity pattern. Replacing Eq. (14)
into Eq. (12) one obtains

p̂− =
NX
i=1

¾iUi < V
H
i ; v̂ > : (15)

Equation (15) shows that if ¾i is too small, the contribution of the i¡th singular velocity pattern to the pressure
¯eld will also be too small. The singular value corresponding to a given singular velocity pattern can therefore
be used as an estimate of its radiation e±ciency. This analogy between radiation e±ciency and singular values
allows the use of the SVD to separate the patterns with high e±ciency (the \radiating" ones) from those with



low e±ciency (the \evanescent" ones) by looking at the singular value associated with each one. It is important
to notice that when using the SVD approach, the patterns associated with low singular values are not actually
evanescent, since they still have a small contribution to the sound power. If a limit ¾l is set as the cuto® singular
value, the singular velocity patterns Vi with i > l can be discarded without causing any signi¯cant e®ect to
the sound power value. Indeed, let ci be the projection of the source boundary normal velocity onto the i¡th
singular velocity pattern,

ci = Vi ¢ v̂: (16)

Borgiotti (1990) shows that the sound power is proportional to the series

¦ =
NX
i=1

¾2i jcij2; (17)

with ¦ being referred to as non-dimensional power and which, if truncated at i = il with l < N and provided
the discarded singular values are neglectable, will be a good approximation, showing that those values do not
have a signi¯cant contribution to sound power.
One is now able to obtain the generalized supersonic velocity v̂(s) from the retained singular velocity patterns

by using the orthonormality property of the columns of V, that is,

v̂(s) =
lX
i=1

(Vi ¢ v̂) v̂: (18)

The supersonic acoustic pressure on the source surface can, on the other hand, be obtained using Eq. (10),
being given by

p̂(s) =H¡1Gv̂(s): (19)

The component normal to the source boundary of the supersonic intensity is obtained using

I(s)ni =
1

2
<
³
p̂
(s)
i v̂

(s)¤

i

´
; (20)

where p̂
(s)
i and v̂

(s)¤

i denote, respectively, the pressure and the velocity conjugate on the i¡th node of the source
boundary mesh and < stands for real part.
Taking the SVD of the radiation operator, one has

p̂− = U§V
H v̂: (21)

Comparing Eq. (21) with Eq. (4) and using the orthogonality properties ofU and V some of those analogies can
be identi¯ed. The multiplication of matrix VH by the velocity v̂n is similar to performing the spatial Fourier
transform which leads to ~vn in Eq. (4) since it also denotes a projection of v̂n onto an orthonormal basis, the
columns of V. Multiplication by matrix § corresponds to the multiplication of ~vn by the term ½0cke

ikzz=kz,
since it is related to the radiation e±ciency of each one of the basis vectors onto which the velocity is projected.
At last, multiplication by matrix U corresponds to the inverse spatial Fourier transform, which is necessary for
obtaining the sound pressure at the ¯eld points.
The choice of an optimum value for l in Eq. (18) is, of course, of great importance. If too small a value

is chosen, an excessive quantity of singular values is discarded, causing the supersonic intensity not to take
into account singular velocity patterns which do contribute to the sound power. On the other hand, if too
large a value is used, singular velocity patterns which generate a negligible amount of sound power will also
be taken into account in the supersonic velocity evaluation. In the former case, the sound power obtained by
the integration of the supersonic intensity over the source boundary will be smaller than its actual value, while
in the latter, although the sound power so calculated is very close to the actual one, the supersonic intensity
will be masked by the presence of nopropagating patterns, impairing its feature of discarding hotspots that are
actually caused by energy recirculation. It is however possible to establish a criterion for an automatic choice
of il, based on the sound power. The idea is to closely monitor the value obtained by Eq. (17) as each term in
the summation is added. When the addition of new terms produces a change in the sound power smaller than
a preset limit ±, that is,

² =

P(l+1)
i=1 ¾2i jcij2 ¡

Pl
i=1 ¾

2
i jcij2Pl

i=1 ¾
2
i jcij2

< ±; (22)

the current amount of terms is considered to be the ideal number of singular velocity patterns to be retained in
order not to include the nopropagating ones.

5. Numerical examples

The generalized supersonic intensity values should converge to the conventional active intensity as the fre-
quency increases. In particular, if a local coincidence frequency can be identi¯ed, then both kinds of intensity
should be equal for frequencies higher than that.
Let us consider a °at-capped cylinder vibrating in a (6; 2) mode, that is, having six anti-nodes in the axial

direction and two in the tangential one (see Fig. 1).



Figure 1. Vibration mode used in the convergence study

Figure 2. Supersonic intensity (W/m2), º = 0:6

The coincidence frequency fc is de¯ned to be the one which provides a wavelength that is equal to the
distance between two adjacent anti-nodes, which yields in this case fc = 233 Hz. A non dimensional frequency,
de¯ned as º = f=fc was then varied from 0:6 to 1:0. This range is enough to show the e®ect of canceling on
the discrepancy observed between the generalized supersonic intensity and the conventional active intensity.
Figs. (2, 3) and Figs. (4, 5) show the two intensities computed for º = 0:6 and º = 1 (Magalh~aes, Tenenbaum
and Zindeluk, 2001, Magalh~aes, 2002).

Figure 3. Active intensity (W/m2), º = 0:6

Figure 4. Supersonic intensity (W/m2), º = 1:0



Figure 5. Active intensity (W/m2), º = 1:0

The results show that, in fact, as the frequency approaches coincidence, the generalized supersonic intensity
converges to the conventional active intensity, as well as the radiation e±ciency tends to unity, what is an
expected result, since the cancellation mechanism gets more and more negligible as the frequency increases.

6. Corner and edge modes identi¯cation

The relation between the spatial distribution of anti-nodes at a given vibration mode and the acoustic
wavelength is of great importance in determining if the mode will behave as and edge-mode, a corner-mode or
a surface-mode (Maidanik, 1962). The generalized supersonic intensity should be capable of identifying these
modes, since it eliminates the recirculation patterns generated by the cancelation between adjacent anti-nodes
below coincidence. Although this mode classi¯cation is not directly applicable for arbitrarily shaped sources, a
numerical test was conducted with the same °at-capped cylinder used in the previous section. That geometry,
in spite of being not separable, is signi¯cantly regular so that its vibration modes still can be roughly classi¯ed
with respect to their acoustic behavior. In the test conducted in this section there can be no corner modes, since,
of course, the source has no edge in the circumferential direction. Therefore, only edge and surface modes can
be detected. The test consists of evaluating both the generalized supersonic and conventional active intensity
for the (6,0) mode which has six anti-nodes in the axial direction and none in the tangential one, that is, the
anti-nodes behave as ring sources. The coincidence frequency in this case is 205.8 Hz.

Figure 6. Supersonic intensity (W/m2), º = 0:5

At a non-dimensional frequency º = 0:5, the mode (6,0) behaves like an edge mode, radiating almost only
by the lower and upper boundary of the cylinder. This con¯guration, as shown in Fig. 6, is identi¯ed by the
generalized supersonic intensity evaluated on the source boundary, where the higher values in the neighborhood
of the caps are clearly noticeable. It is worth noticing that, since during the calculation of the radiation operator,
an inward normal was used, negative intensity values mean actually outbound radiation. The conventional active
intensity, as shown in Fig. 7, on the other hand, shows also the regions where there is a signi¯cant amount of
recirculation due to canceling, leading to some confusion about which areas actually contribute to the sound
power.
A second numerical test was conducted using a source with a shape of a simpli¯ed outer shell of a combustion

engine with 4 in-line cylinders. In this particular case, the radiation was studied at 40Hz. This frequency
corresponds to the main combustion loads found at typical engine idle speeds (¼ 1200 rpm).
Figures 9 and 10 show that some active intensity peaks on the source surface are created, actually, by energy

recirculation patterns, since they do not appear on the supersonic intensity distribution. Fig. 9 shows also that
the regions close to the edges are the main contributors to the overall sound power.

7. Singular participation

The analysis of other quantities that are calculated during the process of obtaining the supersonic intensity
can give further insight about the radiation of a given source. The coe±cients ci in Eq. (17) are, as mentioned
before, a projection of the normal velocity over the singular velocity patterns, being therefore a kind of modal



Figure 7. Active intensity (W/m2), º = 0:5

Figure 8. Active intensity (W/m2), f = 40 Hz

Figure 9. Supersonic intensity (W/m2), f = 40 Hz

participation of the normal velocity. Since the basis used for the projection is not the modal one, but is
instead formed by the singular velocity patterns, the vector formed by the coe±cients ci will be referred to as
the singular participation. These coe±cients, when analyzed together with the decay curve of the radiation
operator singular values and the convergence curve of the sound power, furnish a tool for identifying which
velocity patterns radiate with high e±ciency into the far ¯eld and are, therefore, taken into account when the
supersonic intensity is built. Besides, the analysis of the singular participation curve can also be used to evaluate
the relative importance of each one of them. Figs. 10 to 13 show, respectively, the singular participation, singular
values decay curve and sound power convergence curve for the °at-capped cylinder vibration in the (6,0) mode.

Figure 10. Singular participation of the normal velocity and supersonic velocity for the °at-capped cylinder

Figure 10 shows that the normal velocity at º = 0:5 is built basically by four singular velocity patterns,
since the singular participation curve is virtually null, except for the four peaks. The dashed part of the curve
denotes the singular velocity patterns that were taken into account for calculating the supersonic intensity. The
fact that only a small part of the curve was used can be justi¯ed by looking at Fig. 13, where the convergence of



Figure 11. Singular values decay curve for the °at-capped cylinder at º = 0:5

Figure 12. Typical singular values decay curve

Figure 13. Sound power convergence curve for the °at-capped cylinder

the sound power as a function of the number of singular velocity patterns retained is plotted. As can be noticed,
as soon as the velocity pattern corresponding to the ¯rst peak in Fig. 10 is added, the sound power reaches its
¯nal value, showing that it receives virtually no contribution from the peaks corresponding to other velocity
patterns. Theses patterns can then be discarded for evaluating the supersonic intensity. The decay curve of the
radiation operator singular values can give further insight to the interpretation of the sound power convergence
curve. Analyzing Figs. 10 and 11 together, it can be noticed that the ¯rst peak in the singular participation
occurs for the singular velocity pattern corresponding to the 10th singular value. At the decay curve, it can
be seen that it corresponds to about 20% of the ¯rst singular value (¾1), meaning that it has a fairly high
radiation e±ciency. On the other hand, the second peak on the singular participation curve corresponds to the
30th singular velocity pattern, whose singular value is about 0.1% of ¾1, that is, its contribution is about 30 dB
smaller than that of the ¯rst peak. Since the third and fourth peaks are related to even smaller singular values,
their contribution can be totally neglected.
Figures 10 to 12 show the results of the study conducted for the engine-shaped source. Some interesting

di®erences canbe noticed. The ¯rst one is related to the sound power convergence curve which, for the cylindrical
source, reaches its ¯nal value with less than ten singular velocity patterns taken into account. For the engine-
shaped source, however, this curve stabilizes only after around ¯fty velocity patterns are introduced. This



Figure 14. Sound power convergence for the engine-shaped source

Figure 15. Singular values decay curve for the engine-shaped source

Figure 16. Singular participation curve for the engine-shaped source

di®erence is justi¯ed by the fact that, in the second case, the singular participation shows that the normal
velocity has relatively low content of low order velocity patterns, causing these patterns, despite having high
radiation e±ciency, to have low contribution to sound power. The second di®erence is related to the singular
participation curve. It can be clearly noticed, by comparing Figs. 10 and 16, that the ¯rst is null except at the
peaks, while the second presents a signi¯cantly more irregular behavior.

8. Conclusions

The numerical results con¯rm, as expected, the convergence of the supersonic intensity to the active intensity
as the frequency approaches coincidence, since adjacent opposite-phased anti-nodes cease to interfere destruc-
tively. The results show that the generalized supersonic intensity is capable of identifying edge modes on the
°at-capped cylinder, eliminating those regions where the active intensity could mistakenly indicate a spot as
being a signi¯cant contributor to the sound power. For the source roughly shaped like an internal combustion
engine, the supersonic intensity was also capable of identifying the regions with high contribution to the sound
power, in opposition to the conventional active intensity, which showed high values where, in fact, recirculation
was taking place due to canceling.



The discrepancy between singular velocity patterns and normal vibration modes is also dealt with by ana-
lyzing the singular participation curves. The numerical results show that the more irregular the source shape,
the higher the discrepancy between them will be. This fact shows that a simple analysis of the normal vibration
modes may, depending on the source geometry, not be enough for obtaining a meaningful insight about its
sound radiation properties. In those cases, the SVD can be quite useful.
It was also pointed out that there is a decrease in the resolution of the supersonic intensity results due to the

discarding the singular velocity patterns with low radiation e±ciency, which normally present a short spatial
variation (small wavelength) and are therefore responsible for the sharp spatial variation that may exist in the
normal velocity distribution. This resolution loss, however, is not a limitation of the methodology, but, instead,
re°ects the fact that components with small wavelength present, in many cases, negligible contribution to the
sound power and should, therefore, be discarded during the evaluation of the supersonic intensity.
There is a signi¯cant di®erence between the Fourier approach and the SVD-based one. While in the former

the function which form the basis onto which the normal velocity is projected are frequency independent, in
the latter it is necessary to reevaluate the matrices U, § and V whenever the frequency changes, causing the
computational cost to be signi¯cantly higher in the SVD-based approach than in the Fourier-based one. This
disadvantage, however, is overcomed by the possibility of broader applicability of the former.
In a general way, the obtained results show that the generalized supersonic intensity can be an auxiliary

parameter in the design of potentially noisy products such as household appliances, combustion engines etc.
The association of the ¯nite elements method for simulating the source vibrational behavior with the boundary
elements method, for prediction of its acoustic performance, has shown to be useful to identify, by evaluating
the generalized supersonic intensity, the regions where a geometry or local sti®ness change might have a greater
e®ect on the sound power, contributing therefore to reduce it.
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