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Abstract. Chaotic behavior of dynamical systems offers a rich variety of orbits, which can be controlled by small 
perturbations in either a specific parameter of the system or a dynamical variable. Chaos control usually involves two 
steps. In the first, unstable periodic orbits (UPOs) that are embedded in the chaotic set are identified. After that, a 
control technique is employed in order to stabilize a desirable orbit. This contribution employs the close-return method 
to identify UPOs and a semi-continuous control method, which is built up on the OGY method, to stabilize some 
desirable UPO. As an application to a mechanical system, a nonlinear pendulum is considered and, based on 
parameters obtained from an experimental setup, analyses are carried out. Signals are generated by numerical 
integration of the mathematical model and two different situations are treated. Firstly, it is assumed that all state 
variables are available. After that, the analysis is done from scalar time series and therefore, it is important to evaluate 
the effect of state space reconstruction. Delay coordinates method and extended state observers are employed with this 
aim. Results show situations where these techniques may be used to control chaos in mechanical systems.  
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1. Introduction  
 

Chaotic behavior has been extensively analyzed in different fields of sciences as for example engineering, medicine, 
ecology, biology and economy. As a matter of fact, chaos may occur in many natural processes and the idea that chaotic 
behavior may be controlled by small perturbations of some physical parameter is making this kind of behavior to be 
desirable in different applications. 

Chaos control is based on the richness of responses of chaotic behavior. A chaotic attractor has a dense set of 
unstable periodic orbits (UPOs) and the system often visits the neighborhood of each one of them. Moreover, chaotic 
response has sensitive dependence to initial condition, which implies that the system’s evolution may be altered by 
small perturbations. Therefore, chaos control may be understood as the use of tiny perturbations for the stabilization of 
an UPO embedded in a chaotic attractor, which makes this kind of behavior to be desirable in a variety of applications, 
since one of these UPOs can provide better performance than others in a particular situation. It should be pointed out 
that it is not necessary to have a mathematical model to achieve the control goal since all control parameters may be 
resolved from time series analysis.  

Chaos control methods may be classified as discrete or continuous techniques. The first chaos control method had 
been proposed by Ott et al. (1990), nowadays known as the OGY (Ott-Grebogi-Yorke) method. This is a discrete 
technique that considers small perturbations promoted in the neighborhood of the desired orbit when the trajectory 
crosses a specific surface, such as some Poincaré section. On the other hand, continuous methods are exemplified by the 
so called delayed feedback control, proposed by Pyragas (1992), which states that chaotic systems can be stabilized by a 
feedback perturbation proportional to the difference between the present and a delayed state of the system.  

There are many improvements of the OGY method that aim to overcome some of its original limitations, as for 
example: control of high periodic and high unstable UPO (Otani & Jones, 1997, Ritz et al., 1997 and Hübinger et al., 
1994) and control using time delay coordinates (Dressler & Nitsche, 1992; So & Ott, 1995 and Korte et al., 1995). For 
more details on chaos control based on OGY method refer to: Chen (2001), Chanfreau & Lyyjynen (1999), Ditto et al. 
(1995), Ditto & Showalter (1997), Dubé & Després (2000), Shinbrot et al. (1993), Grebogi & Lai (1997) and Boccaletti 
et al. (2000).  

The main purpose of this contribution is the analysis of chaos control in a nonlinear pendulum that is based on the 
experimental apparatus previously analyzed by Franca & Savi (2001), Pinto & Savi (2004) and Pereira-Pinto et al. 
(2004). This pendulum has both torsional stiffness and damping. All signals are generated numerically by the 
integration of the equations of the mathematical model proposed, which uses experimentally identified parameters. The 
close-return (CR) method (Auerbach et al., 1987) is employed to determine the UPO embedded in the attractor. A 
variation of the OGY technique called semi-continuous control (SCC) method, proposed by Hübinger et al. (1994) and 
extended by Korte et al. (1995), is considered to stabilize the desirable orbit. The control analysis considers two 
different situations: all state variables are available; and just a scalar time series is available. For the second situation, 



state space reconstruction is done with the method of delay coordinates (Takens, 1981) and also considering extended 
state observers. Results confirm the possibility of the use of this approach to deal with mechanical systems. 
 
2. Chaos Control Method 
 

The control of chaos can be treated as a two-stage process. The first stage is composed by the identification of 
UPOs and is named as “learning stage”. Since UPOs are system invariants, they can be analyzed from phase space 
reconstructed from a scalar time series (Gunaratne et al., 1989).  

This article considers the close-return (CR) method (Auerbach et al., 1987) for the detection of UPOs embedded in 
the attractor. The basic idea is to search for a period−P UPO in the time series represented by vectors . The 
identification of a period−P UPO is based on a search for pairs of points in the time series that satisfy the condition 
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belong to a period-P cycle are grouped together. During the search, the vicinity of a UPO may be visited many times, 
and it is necessary to distinguish each orbit, remove any cycle permutation and to average them in order to improve 
estimations as shown by Otani & Jones (1997). 

After the identification of a UPO, one can proceed to the next stage of the control process that is the stabilization of 
the desired orbit. The OGY (Ott et al., 1990) approach considers the stabilization from a discrete system of the form of 
a map ),(1 pF ii ξξ =+ , where p  is an accessible parameter for control. This is equivalent to a parameter dependent 
map associated with a general surface, usually a Poincaré section. Let 
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on this section corresponding to an orbit in the chaotic attractor that one wants to stabilize. Basically, the control idea is 
to monitor the system dynamics until the neighborhood of this point is reached. After that, a proper small change in the 
parameter p causes the next state ξi+1 to fall into the stable direction of the fixed point.  

In order to overcome some limitations of the original OGY formulation such as control of orbits with large 
instability, measured by unstable eigenvalues, and orbits of high period, Hübinger et al. (1994) introduced a semi-
continuous control (SCC) method or local control method, which description is presented as follows. 

The SCC method lies between the continuous and the discrete time control because one can introduce as many 
intermediate Poincaré sections, viewed as control stations, as it is necessary to achieve stabilization of a desirable UPO. 
Therefore, the SCC method is based on measuring transition maps of the system. These maps relate the state of the 
system in one Poincaré section to the next. In order to use N control stations per forcing period T, one introduces N 
equally spaced successive Poincaré sections )1(,...,0, −= NnnΣ . Let  be the intersections of the UPO with n

n
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nΣ and )1,( +nnF  be the mapping from one control station nΣ  to the next one 1+nΣ . Hence, one considers the map 
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A linear approximation of )1,( +nnF  around  and  is considered as follows: n
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Hübinger et al. (1994) analyze the possibility of the eigenvalues of  be complex numbers and then they use the 
fact that the linear mapping  deforms a sphere around  into an ellipsoid around . Therefore, a singular value 
decomposition (SVD),  
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is employed in order to determine the directions  and  in n
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Korte et al. (1995) establish the control target as being the adjustment of  such that the direction  on the 

map n+1 is obtained, resulting in a maximal shrinking on map n+2. Therefore, it demands , where 
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which is a relation from what α and  can be conveniently chosen.  npδ
 
2.1. State Space Reconstruction Using Delay Coordinates 

 
When only a scalar time series is available for measurements, one needs to convert the observations into state 

vectors. This task is known as state space reconstruction. As shown by Dressler & Nitsche (1992), state space 
reconstruction by delay coordinates leads to a map )1,( +nnF  that will depend on all parametric changes that influence 
the system in the time interval , that is, , ,… ,  with r being the largest integer value such 

that  lies in this interval. Hence, the use of delay coordinates implies that the following map is considered, instead 
of the one shown in Equation (1): 
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Taking the linear approximation of )1,( +nnF  around  and using deviation variables : n
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SVD procedure is employed again and the resulting linear system is given by: 
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from what α and can be conveniently calculated. All the local dynamical properties of the control points can be 
extracted from state space reconstruction and one must wait until the system dynamics reaches the neighborhood of any 
of them to adequately perturb the control parameter. 

npδ

 
2.2. State Space Reconstruction Using Extended Sate Observers 

 
A state observer may be understood as an auxiliary system that is employed to estimate a non-observed state 

(Luenberger, 1964; Kalman, 1960). The observer is a very useful tool for receiving the information of the variables of a 
system that are otherwise unknown. For this reason, it is usually employed in control systems where it is necessary the 
knowledge of the plant system from an incomplete observation. In general, the use of state observers is related to 
estimating, controlling and also detecting and identifying failures in dynamical systems. 

This contribution uses the idea of the extended state observers (ESO) to promote state space reconstruction. In order 
to introduce the basic ideas of this procedure, consider a general nonlinear system given by:  
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where f is a nonlinear function that represents the dynamics of the system and the disturbance, w(x,t) is the external 
unknown input disturbance,  is the control signal and  y is the observable output. Notice that y = x),( txu 1 is the only 
measured variable and the parameter  is known. Therefore, it is necessary to estimate x0b 2 in order to determine the full 
state of the system. 

Nonlinear systems have many types of uncertainties, such as imperfections of mechanisms, unknown nonlinearities 
and paremeters, which make impossible to obtain an exact function f. Since classical state observer designs, including 
high-gain and sliding-mode observers, depend on the perfect knowledge of the system dynamics, Han (1995) suggests 
an alternative method called extended state observer as an approach to deal with the estimation of states of dynamics 
that do not have a mathematical model. With this aim, the system (8) is augmented as 
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Notice that, now, vector x is defined by, { }Txxxx 321= , where variable  represents an 

extended state. It should be pointed out that, both  and its derivative  are unknown. However, by 
making f as a state, it is now possible to estimate it by using a state observer. Han (1995) proposed the following form: 
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Here,  are estimated values of vector x. Notice that  represents an estimative of 

, and 
{ Txxxx 321 ˆˆˆˆ = } 3x̂

)),(,,( 21 txwxxf 11 x̂xe −=  represents the error associated with the estimation. Moreover, L is the observer gain 
vector, which can be obtained using known method such as pole placement method. In this equation, the following 
vectors are used: 
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The gain of the observer is chosen in order to obtain a good estimative for the system variables. Therefore, function 

gi is defined as a modified exponential gain function (Wang & Gao, 2003): 
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The parameter δ is a small number used to limit the gain in the neighborhood of the origin. This procedure prevents 

excessive gain when error is small avoiding high frequency chattering. Therefore, when 0 < αi < 1, gi yields high gain 
for small errors, δ≤e . On the other hand, when αi < 0, it occurs a reduction of the observed error.  

The definition of the gain is closed related to the dynamics characteristics of the system. Usually, the first trial 
considers a linear gain (αi = 1, i =1,2,3), eeg ii =),,( δα  (i =1,2,3). Under this assumption, the pole placement method 
can be used for the initial design of this observer. Nonlinearities can be added in order to improve the performance of 
the observer. Nevertheless, it is important to say that nonlinear gain functions introduce higher complexity in the 
estimation algorithm (Gao, 2003). 

The stability of the observer is assured from an appropriate choice of parameters βi. The stability of a linear 
extended state observer can be analyzed subtracting the observer equation (10) from system equation (9). This 
procedure gives an equation for the error dynamics: 
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The stability of the error dynamics is associated with the roots of the characteristic polynomial of Ae, since h is 

bounded: 
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In order to tune the linear ESO, the roots must be all in the open left-half. Gao (2003) defines the ωo-

parameterization where all observer eigenvalues must be equal to −ωo. Therefore,  becomes a 
function of ω

{ TL 321 βββ= }
o, which is denoted as the bandwidth of the observer. Then, 
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Solving this equation, one obtains the following relationship between βi and ωo: . 3
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3. Nonlinear Pendulum 

 
As a mechanical application of the procedures presented in this article, a nonlinear pendulum is considered. The 

motivation of the proposed pendulum is an experimental set up, previously analyzed by Franca & Savi (2001) and Pinto 
& Savi (2004). Pereira-Pinto et al. (2004) present a mathematical model to describe the dynamical behavior of the 
pendulum. Here, it is shown just the equations of motion. For more details, see the cited reference.  

The considered nonlinear pendulum is shown in Figure 1. The right side presents the experimental apparatus while 
the left side shows a schematic picture. Basically, pendulum consists of an aluminum disc (1) with a lumped mass (2) 
that is connected to a rotary motion sensor (4). A magnetic device (3) provides an adjustable dissipation of energy. A 
string-spring device (6) provides torsional stiffness to the pendulum and an electric motor (7) excites the pendulum via 
the string-spring device. An actuator (5) provides the necessary perturbations to stabilize this system by properly 
changing the string length. 

 

  

 

 
               (d) 

Figure 1 − Nonlinear pendulum. (a) Physical Model. (1) Metallic disc; (2) Lumped mass; (3) Magnetic damping 
device; (4) Rotary Motion Sensor; (5) Actuator; (6) String-spring device; (7) Electric motor. (b) Parameters and forces 
on the metallic disc. (c) Parameters from driving device. (d) Experimental apparatus. 

 
The equations of motion of this pendulum is given by (Pereira-Pinto et al., 2004): 
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where ϖ is the forcing frequency, a defines the position of the guide of the string with respect to the motor, b is the 
length of the excitation arm of the motor, D is the diameter of the metallic disc and d is the diameter of the driving 
pulley; I is the total inertia of rotating parts, m is the lumped mass and ζ  is the dissipation parameter. The ∆l parameter 
is the length variation in the string provided by the linear actuator (5) shown in Figure 1a. This parameter is considered 
as the variation on the accessible parameter for control purposes.   

The determination of parameters in equation of motion is done by considering the experimental setup of Franca & 
Savi (2001). Table 1 shows the parameters that are evaluated from the experimental setup. Moreover, values of the 
adjustable parameters ϖ and ζ are tuned to generate chaotic response in agreement to the experimental work. The ∆l 
parameter has a null value for the system without control action.  Therefore, using the parameters presented in Table 2, 
it is possible to use a fourth-order Runge-Kutta scheme in order to perform numerical simulations of the equations of 
motion. These parameters are associated with chaos, assured evaluating Lyapunov exponents. By employing the 
algorithm proposed by Wolf et al. (1985), one obtains the following spectrum that presents one positive value: λ = 
{+19.21, −5.19}. 

 
Table 1 – Experimental values of parameters. 

a (m) b (m) d (m) D (m) I (kg m4) k (N/m) m (kg) 
1.6 x 10-2 6.0 x 10-2 2.9 x 10-2 9.2 x 10-2 1.876 x 10-4 4.736 1.6 x 10-2

 



Table 2 –Values of adjustable parameters. 
ϖ  (rad/s) ζ (kg.m2/s) ∆l (m) 

5.15 5.575 x 10-5 0 
 

4. Control of the Nonlinear Pendulum Using All State Variables 
 

The first stage of the control strategy is the identification of UPOs embedded in the chaotic attractor. The CR 
method (Auerbach et al., 1987) is employed with this aim. The value of the tolerance r1 is chosen to be 0.003 and r2 is 
set to be ten times r1. Figure 2 presents a strange attractor of the motion showing points in the Poincaré section 
corresponding to some identified UPOs that will be stabilized in the next stage of control strategy. The SCC method is 
applied considering three control stations. Therefore, a total of four maps per forcing period are considered.  

 
Figure 2 − Strange attractor in intermediate sections showing identified UPOs. 

 
After the identification of the UPOs embedded in the Poincaré section #1, the piercing of the same UPOs in the 

other three Poincaré sections is determined. Then, the local dynamics expressed by the Jacobian matrix and the 
sensitivity vector of the transition maps in a neighborhood of the fixed points are determined using the least−square fit 
method (Auerbach et al., 1987 and Otani & Jones, 1997). After that, the SVD technique is employed for determining 
the stable and unstable directions near the next fixed point. The sensitivity vectors are evaluated allowing the 
trajectories to come close to a fixed point and then one perturbs the parameters by the maximum permissible value. In 
this case, a perturbation in ∆lmax = 20mm is performed, fitting the resulting deviations  from the 
next piercing by the least square procedure. After that, SCC method is employed to stabilize unstable periodic orbits 
and the parameter changes are calculated. 
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In order to explore the possibilities of alternating the stabilized orbits with small changes in the control parameter, 
one performs a simulation that aims the stabilization of the following UPOs: a period−3 UPO in the first 500 forcing 
periods, a period−8 UPO between 500 and 1000 forcing periods, a period−2 UPO between 1000 and 1500 forcing 
periods and a period−3 UPO, different from the first one, between 1500 and 2000 forcing periods. Figure 3 shows the 
system’s dynamics in the Poincaré section #1 during the actuation. Notice that different times are needed for the system 
to achieve the desired stabilization on a particular UPO. This happens because one must wait until the trajectory comes 
close enough to a control point to perform the necessary perturbation, exploiting the ergodicity property of the chaos 
behavior. Moreover, it should be pointed out that, as expected, results show that unstable orbits are stabilized with small 
variations of control parameter after a transient, less than 2mm in this case.  

 
Figure 3 − Response under control. 

(a) Temporal alternating of UPOs in Poincaré section #1. (b) Control signal. 
 
More details on the stabilized orbits due to SCC method are presented in Figures 4, which shows a period-3 

stabilized orbit, time series related to pendulum position and control signal. Notice that, as the target orbit changes, one 
notes short transients on the temporal evolution of ∆l followed by tiny periodic perturbations, as well as good results 
regarding to keeping the system in the desired orbit.    



 
 

 
Figure 4 − UPO period−3 stabilized. 

 
 

5. Control of the Nonlinear Pendulum Using Delay Coordinates 
 
In this section, it is assumed that a scalar time series of angular position is acquired with sampling time ∆t. 

Therefore, in order to reconstruct the dynamics of the system from time series, delay coordinates is employed. The 
average mutual information method is employed to determine time delay (Fraser & Swinney, 1986) while the false 
nearest neighbors method is used to estimate embedding dimension (Rhodes & Morari, 1997). Figure 5 shows the 
reconstructed Poincaré section related to chaotic behavior. State space reconstruction is considered with time delay τ = 
24∆t and a embedding dimension De = 2 (Franca & Savi, 2001).  

 

 
Figure 5 − Reconstructed strange attractor. 

 
After the identification of the UPOs embedded in the Poincaré section #1 (see Figure 5), the piercing of the same 

UPO in the other three Poincaré sections is determined. Then, the local dynamics expressed by the Jacobian matrix of 
the transition maps are determined using the least-square method (Auerbach et al., 1987). The sensitivity vectors  

and  are determined as proposed by Dressler & Nitsche (1992). Subsequently, the SVD technique is employed to 
determine stable and unstable directions near the next control point and the necessary perturbation on ∆l parameter is 
done when the system’s trajectory enters in a neighborhood of a control point.  

nB0
nB1

A simulation of the stabilization of some UPOs is performed aiming the following sequence of UPO: period−3, 
period−6, period−4 and period−6 UPO different from the first one. Figure 6 shows the system’s position and parameter 
perturbation in the Poincaré section #1 during the control procedure. Notice that the control is turned on after the first 
500 forcing periods. It is clear that the control procedure is also able to perform UPO stabilization using delay 
coordinates. 

Figure 7 shows the first stabilized orbit of the previous simulations, a period-3 orbit. As the target orbit is stabilized, 
one notes short transients on the temporal evolution of ∆l followed by tiny periodic perturbations, as well as good 
results regarding to keeping the system in the desired UPO.   

 



 
Figure 6 − Response under control. 

(a) Position of UPOs in Poincaré section #1. (b) Control signal. 
 

 
Figure 7 − UPO period-3 stabilized. 

 
6. Control of the Nonlinear Pendulum Using Extended State Observers 

 
At this point, extended state observers are employed in order to perform state space reconstruction. Figure 8 

presents a strange attractor of the motion showing points in the Poincaré section corresponding to some identified UPOs 
that will be stabilized in the next stage of control strategy. In this reconstruction, it is assumed ωo = 40, which results in 
an attractor equivalent to the real one, obtained from all state variables. As in the previous analysis, the SCC method is 
applied considering four maps per forcing period are considered. 

 

 
Figure 8 – Unstable periodic embedded in the reconstructed attractor. 

 
The stabilization of the UPOs now considers the following sequence: during the first 500 forcing periods control is 

off. After that is stabilized a period-3 UPO between 500 and 1000 forcing periods. A period−6 UPO is then stabilized 
between 1000 and 1500 forcing periods. After that, is stabilized a period−3 UPO, different from the first one, between 
1500 and 2000 forcing periods and finally a period-6, from 2000 and 2500 forcing periods. Figure 9 shows the system’s 
dynamics in the Poincaré section #1 during the actuation. Notice again that different times are needed for the system to 
achieve the desired stabilization on a particular UPO. Moreover, it should be pointed out that, as expected, results show 
that unstable orbits are stabilized with small variations of control parameter after a transient, less than 10mm in this 
case. 



 

 
Figure 9 − Response under control. 

(a) Temporal alternating of UPOs in Poincaré section #1. (b) Control signal. 
 
Figure 10 shows the same results considering phase space and control parameter. Again, it is possible to observe the 

ability of the controller in stabilize a UPO and also the capacity of the procedure to perform state space reconstruction. 
 

 
Figure 10 − Period-3 UPO. 

 
 
7. Conclusions 
 

This contribution discusses the control of chaos in a simulated nonlinear pendulum based on an experimental 
apparatus previously analyzed by Franca & Savi (2001) and Pinto & Savi (2003). In the first stage of the control 
process, the close-return method is employed to identify unstable periodic orbits (UPOs) embedded in the chaotic 
attractor. After that, the semi-continuous control (SCC) method is considered to stabilize desirable orbits. Least-square 
fit method is employed to estimate Jacobian matrixes and sensitivity vectors. Moreover, SVD decomposition is 
employed to estimate directions of unstable and stable manifolds in the vicinity of control points. Signals are generated 
by the numerical integration of the mathematical model. At first, it is considered that all variables are known. 
Simulations of control procedure show that SCC method is capable to perform stabilization of the nonlinear pendulum. 
After that, the analysis is done selecting a single variable as a time series and therefore, it is important to evaluate the 
effect of state space reconstruction on control. Delay coordinates and extended state observers are employed with this 
aim. These techniques are employed to stabilize some of the identified UPOs, confirming the possibility of using such 
approach to control chaotic behavior in mechanical systems using state space reconstruction.  
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