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Abstract. This paper is part of a project in which we aim to study some aspects of the dynamics of a class of road 
vehicles for light loads transportation. Specially, we research their response to ground excitation due to irregular 
pavement conditions. It is an important subject in Brazilian reality. The technology used in our automotive industry is 
mostly imported from the main offices of controlling multinational enterprises. Nevertheless, a special branch of this 
industry is very Brazilian: that of bodybuilding for vehicles for load and mass transportation. This branch is in need of 
larger investments in technological research. In this paper, the vehicle is modeled as a seven-degree-of-freedom 
lumped parameter system: the two independent suspension front wheels, the two degrees of freedom of the rigid rear 
axis and three degrees of freedom of the suspended mass. The linear Equations of Motion (due to the linearization 
hypothesis of small displacements) are deduced via Lagrange’s Equations. The support excitation due to pavement 
irregularities is included in this model. 
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1. Introduction   
  

In its 50 years history, Brazilian automotive industry has imported most of its technology from the headquarters of 
the multinational concerns that control the industry. 

Nevertheless, a sector of the industry is very Brazilian, that of bodybuilding of trucks and busses. Here larger 
investments in research and local technology are needed.  One of the most interesting branches of these researches is 
vehicle dynamics.  

Vehicle dynamics is concerned with the motions to which a certain vehicle and its parts are submitted due to the 
several applied actions. One of the several concerns of this discipline is the support excitation due to the random road 
surface irregularities.  

It is the authors’ view that here we have a common point of interest between mechanical engineering, particularly 
dynamics and control, with some aspects related to the environment.  In fact, that is an excitation originated in the 
environment in which the vehicle runs and, as most of this kind of actions, it is random in nature and can only be 
properly taken in account in terms of statistical concepts such as average values, variances, probability distributions, 
spectral densities, etc. 

Here, we prefer to analyze a model with a small number of degrees of freedom to better understand the underlying 
concepts, leaving to future work the use of the Finite Elements Method. A more complete description of the model is to 
be found in the Master Dissertation of the second author, Colombo (2001). 

Due to the random nature of the excitations, this research is based on the theory of random vibrations. Good 
introductions to the field are to be found in Brasil (1993) and in the classic textbook by Newland (1993). 

The most intricate phase of the work is the mathematical modeling of irregularities of usual road surfaces. We adopt 
a power spectrum of these irregularities, considered to be a stationary, ergodic and gaussian random process. To that 
purpose, we borrowed heavily from Wong (1978) and Costa Neto (2000). 

Our proposition is to perform a Monte Carlo type simulation of the support excitation based on the chosen power 
spectrum. A large number of loading time histories is generated by superposition of harmonic functions whose 
amplitudes are taken from the spectrum for each of the several frequency ranges it is divided. The phases are randomly 
set. The idea is inspired by the so-called “synthetic Wind”, an analogous procedure to analyze the wind effect on tall 
civil structures proposed by Franco (1993). 

  
   
2. The Mathematical Model 
  

2.1 Model description 
 
Our structure is a road vehicle for lightweight transport. 



We consider a X , Y , Z reference frame. Our model comprises a suspended mass  with moments of inertia  

and , with respect to axis 
7m 5I

6I X , Y , supported by suspension setups (spring and damper) and tires. 
The two forward suspensions are of the independent type and the rear suspensions are united by a rigid axis. 
The forward wheels 1 and 2 are modeled as lumped masses,  and  respectively and the rear wheels are part of 

the rear rigid axis with mass  and moment of inertia about 
1m 2m

3m X  axis, . 4I
Figures 1 and 2 present a schematic representation of the vehicle. 
 
The spring are supposed to have linear behavior with stiffness coefficients 

sfK  = forward suspension stiffness 

stK  = rear suspension stiffness 
The dampers are supposed to have viscous linear behavior with damping coefficients 

sfC  = forward suspension damping coefficient 

stC  = rear suspension damping coefficient 
Tires are considered to have stiffness given by 

pfK  = forward tire stiffness 

ptK  = rear tire stiffness 
The damping coefficients of the tires are: 

pfC  = forward tire damping coefficient 

ptC  = rear tire damping coefficient 
 
The ground irregularities are represented by the following variables  

iw  = support excitation of a certain wheel:  

1w  : Vertical displacement under left forward wheel  

2w  : Vertical displacement under right forward wheel 

3w  : Vertical displacement under left rear wheel 

4w  : Vertical displacement under right rear wheel 
As presented in the figure, the model comprises 4 masses and 7 degrees of freedom. 
The chosen degrees of freedom are as follows: 
Main Mass ( ): 7m
 vertical motion  (Heave) 7q
 rotation  about 5q X  axis (Roll)  

 rotation  about 6q Y  axis (Pitch) 

Rear Mass ( ) 3m
 vertical motion  3q
 rotation , rear axis rotation about 4q X  axis 

Forward Masses (  and ) : 1m 2m
 vertical motion  and  1q 2q
 
Important dimensions : 

fa  - Half distance along axis Y  of forward wheel and damper/spring set with respect to the vehicle . CG

ta  - Half distance along axis Y  of the rear wheel damper/spring set with respect to the vehicle CG . 

fb  - Distance along axis X  of the forward wheel with respect to the vehicle CG . 

tb  - Distance along axis X  of the rear wheel with respect to the vehicle . CG
 
 
 



 

 
 
 

Figure 1: rear and frontal view of the model 
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Figure 2: lateral view of the model 

 
 

2.2 Derivation of Equations of motion 
 
A convenient way to derive the equations of motion are the Lagrange Equations. 
We need  independent coordinates to describe the motion of a  degrees of freedom system. N N
These are the so called generalized coordinates here represented by . iq
The Lagrange Equations are: 
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iQ  = non-conservative generalized forces 

cip  = conservative generalized forces 

Ni ,,2,1 K=  



where  is the number of degrees of freedom N
Equation (1) allows analyses of non-conservative systems as our damped model. 

As in our case, the kinetic energy T depends only on the velocities 0=
∂
∂

iq
T

 

Thus, Lagrange equations reduce to 
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2.2.Kinetic Energy 
 
For our model, the kinetic energy is 
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where  represent the masses,  the moments of inertia and  the velocities im iI iq&
 
2.2.2 Contributions to the Lagrange equations 

The contributions to Lagrange equations given by the kinetic energy, ⎟⎟
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 for each degree of freedom, lead to 

the Mass Matrix: 
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2.2.3 Strain Energy 
 
We consider small rotations (linearization) leading to Strain Energy given by 
 

2

2
1 KxU =  (4) 

 
where K is the stiffness of the springs of our model. 
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2.2.4 Work of conservative forces 
 
These forces are due to gravity (self weight), that is, in the negative vertical direction. As the coordinates increase in 

the opposite sense, the work is always negative: 
 

ic UqW =  (6) 
 

( )77332211 qmqmqmqmgWc +++−=  (7) 
 
2.2.5  Total Potential Energy 
 

cWUV −=  (8) 
 
2.2.6 Contributions to the Lagrange equations 

The contributions to Lagrange equations given by the potential energy, 
iq

V
∂
∂

 for each degree of freedom, lead to the 

Stiffness Matrix: 
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2.2.7 Generalized Non-Conservative forces 
 
Using the Virtual Work Principle in terms of generalized coordinates we get the non-conservative generalized forces 

as a sum of dot products: 
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where  Mj ,,2,1 K=
 
M  = number of applied forces 

jF
r

 = applied forces 

jR
r

 = position vector of the applied forces 
As we consider a linearized system, due to small rotations, the dumping forces may be considered applied in only 

the vertical direction (  axis) and their position vector will have only vertical components. z
Thus: 
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jZ  are the vertical components of forces 

jz  are the  components of position vectors of the force z j  
Figure 3 displays those components. 
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Figure 3: non-conservative forces and their virtual displacements, frontal and rear view of the model 
 
The Generalized non-conservative forces are: 
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Leading to the Damping Matrix 
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2.2.8  Load vectors 
 
Vector of conservative loads 
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Vector of non-conservative loads 
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Full Loads Vector 
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3. A Monte Carlo type Simulation of Road Surface Irregularities 
 

The ground profile of a road may be regarded as a random superposition of harmonic functions. The practical 
acquisition of this information is usually performed using accelerometers mounted in test vehicles. The generated 
electric analog signal is afterwards transformed into digital signals to generate power spectra. 

A power spectrum, or, more exactly, a power spectral density function is, by definition, the Fourier Transform of the 
Autocorrelation function of the signal. It allows for a practical evaluation of the frequency that certain amplitude levels 
repeat in the signal. 

For our application, road irregularities, one of the most used spectra is the one given by Wong (1978), defined as: 
 

spN
spCS −Ω=Ω)(           (18) 

 



where is the spectral density in m2/cycle/m,  )(ΩS Ω  is the frequency (in cycles/m), and   and are constants 
related to the surface type. The domain of the function is also related to the type of surface. 

spC spN

One must be careful to note that , in this application, is the spatial frequency or wave number, related to the time 
frequency f (in Hz) or circular frequency 

Ω
ω  (in rad/s) by 

 

xVf Ω=            (19) 
 

xVΩ= πω 2            (20) 
 
where  is the velocity of the vehicle (in m/s). xV
 

The discretization algorithm we use to simulate the excitation histories is a superposition of harmonic functions in the 
form: 

 

∑
=

+Ω=
nh

i
iii xAxw

1
)sen()( φ           (21) 

 
where w(x) is the composed function that simulates the surface vertical irregularities at a x position along the road, Ai is 
the amplitude obtained from the spectrum for each one of the nh discrete frequencies  we arbitrarily divide the 

spectrum, and 
iΩ

iφ  is the randomly drawn phase of a particular harmonic function.  
The amplitude for each frequency band the spectrum is arbitrarily divided is given by:  
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where  and  are, respectively, the lower and upper frequencies of the band. The average value of the frequency 
of the particular harmonic function is  

1iΩ 2iΩ

 

21 iii ΩΩ=Ω                    (25) 
 
As suggested by Franco (1993) we have adopted 12 bands. 

To avoid undesired resonance, phase angles are pseudo-randomly set for each function and for the left and right sides 
of the vehicle.  
 
4. Numerical integration 

 
Due to the complexity of the problem we chose to use numerical step-by-step integration of the differential equations. 

We adopted the Constant Average Acceleration Newmark Method, which, for linear systems, is unconditionally stable.  
To assure accuracy, one must take special care in setting the integration time step. Further, we must be sure to capture 

the effect of the chosen higher frequency harmonic loading function.  A practical rule of thumb given by authors, such 
as Clough and Penzien (1994), is to use at least 10 steps to reproduce the period of the higher frequency, that is, to 
adopt at least one tenth of this period as our time step.  
 
 
 
 



 
5. A complete example 
 

We present a sample analysis of a lightweight road vehicle produced by Agrale SA, Caxias do Sul, RS, Brazil. Total 
suspended mass is 3738 kg comprising self-weight, payload, motor, fuel and other masses. The masses of the 

two front suspensions and the rear axis, including springs, are, respectively, 

=7m
kgm 1401 = ,  and 

. 

kgm 1402 =
kgm 3983 =

Moments of inertia of the rear axis about the X global axis and of the suspended mass about the X and Y global axis 
are, respectively, , , and . 2

4 4,206 kgmI = 2
5 1712kgmI = 2

6 8086kgmI =
The springs stiffness and the damping coefficients of the dampers, as given by the manufactures are:  = 120000 

N/m,  = 140000 N/m,  = 16192 Ns/m,  = 17400  Ns/m. 
sfK

stK sfC stC

The stiffness and damping coefficients of the tires, as given by the manufactures are:  = 530000 N/m,  = 

530000 N/m,  = 1000 Ns/m,  = 1000 Ns/m. 
pfK ptK

pfC ptC
Dimensions of the vehicle are:  - 0,86 m,  - 0,86 m,  - 1,76 m,  - 1,04 m. fa ta fb tb
 
For this class of vehicle and considering unpaved roads, we adopt the following parameters for the spectrum given by  

Wong (1978): 
6104,4 −= xCsp  

1,2=spN  

in a band of wave numbers  . We adopted for the analysis a vehicle velocity of 50 km/h. 1,112,0 ≤Ω≤
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Figure 5: sample simulation of road irregularities, right side of the vehicle 



 
 
 

 
 
 
 
 
 
 
 
 
 
 )
 

Figure 6: sample displacements response in the 7 generalized coordinate (vertical motion of the suspended mass) 
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We considered  230 values. Response statistics are: 
Average = -0.087228m 
Standard deviation = 0.009429m 
If we adopt a certain probability distribution, such as the Gaussian one, we are able to determine the probability of 

occurrence of certain response values.  
It is interesting to notice that as we performed 10 other simulations, varying the phase angles setting, little variation 

was detected in the average and standard deviation values. This is an evidence of an ergodic process. 
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