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Abstract: When designing the supporting structure of a power generator group, under predefined data relative to 
loadings and frequency of operation of the group or parts to be protected, some special requeriment is the definition of 
a specific system of vibration isolators for the supporting structure. The objective of this work is the computational 
development of an optimal system of vibration isolators for the group constituted by the motor, the generator and the 
supporting structure. The methodology of the work involves the modeling of the group as a rigid body and placed over 
isolators, which are selected with an objective function oriented to minimize the maximum natural frequency of the 
group in order to be far away from any excitement frequency. Some results of this development include the optimal 
definition of the stiffness and damping parameters of the vibration isolators for safe operation of the group. 
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1. INTRODUCTION 
 
Three basic arguments can be argued about control of vibrations in mechanical equipments. 
Depending on the excitement level of the equipment, what corresponds to the first argument, the equipment can fail 

because of discrepancies in terms of the design conception, in the construction and operation ways, as well as due to the 
usage of no certificated items. 

A correct understanding of the transmission path, what corresponds to the second argument, makes possible to 
reduce the vibration energy propagation, through the utilization of secondary elements. 

The relative vibrations among parts of the equipment can be caused by an external source, the own equipment or 
due to the action of forces generated during the equipment operation. This last argument can be represented by forced 
vibrations, which can excite some natural frequency of the equipment. 

Inman (2007), Rivin (2006) and Moore (1985) present different elements for reducing or isolating the vibrations 
generated in the equipment, and develops a methodological sequence in order to find the most appropriate element for 
isolating or absorbing some vibration. After evaluation of the equipment response and identification of the design 
vibrational parameters, the next step is to adjust these parameters for satisfying the design response.  

This work seeks optimal values of parameters for the isolators system of a motor generator group under certain 
conditions of the equipment to be protected. 

 
2. CENTER OF MASS OF THE POWER GROUP  

 
The power group is constituted by the motor, the generator and the supporting structure, the last also serves as 

fixation medium for the isolators. 
A relevant model of the group under vibration involves a rigid body with distributed mass and restricted through 

isolators. In this case, the equilibrium of forces and moments must be satisfied during the movement of the body. 
The group is considered as a rigid body with center of mass CM, as shown in Fig. 1. 
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Figure 1. Origin of the coordinate system SC and the center of mass CM 
 
Under applied forces, the body can experiment translational (longitudinal x, transversal y and vertical z) or 

rotational (roll ψx, pitch ψy and yawθ) displacements. In most cases, the vertical/roll displacements are decoupled, while 
the longitudinal/pitch and the transversal/roll displacements are coupled.  

The center of mass is illustrated in Fig. 2. 
 

 
 

Figure 2. Center of mass location. 
 

3. DYNAMIC EQUATIONS OF FREE VIBRATION  
 
The power group is supported with a discrete number of isolators. The movement equations of free vibration can be 

developed with and without damping. The group is assumed as a rigid body in according to Fig. 1 and can vibrate with 
up to six degrees of freedom. The analysis considers the following conditions (Moore, 1985):  
- The reference axes for the body will be chosen such that products of inertia Ixy=Iyz=Izx=0. The origin of the 
reference axes passes through the CM and the moments of inertia Ixx, Iyy, Izz will be the principal moments of inertia. 
-  The supporting springs are aligned such their load axes are parallel to the reference axes. 
-  For the supporting springs, kxy=kyz=kzx=0, where for example, kxy is the lateral stiffness of the spring with 
longitudinal axes in the x direction. 
-  The stiffness of the foundation is infinity. 

The motion equations for damped free vibration, considering the Fig. 3, are expressed as:  
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where, 
m : total mass of body (group), equal to 70000 kg  

ziyixi lll ,,  : distance from the CM of the body to the isolator i, in axes x, y, z, respectively 
x, y, z  : translation in axes x, y, z, respectively 

zyx &&& ,,  : velocity in axes x, y, z, respectively 
zyx &&&&&& ,,  : acceleration in axes x, y, z, respectively 

ziyixi k,k,k  : stiffness of the isolator i in axes x, y, z, respectively 

ziyixi c,c,c  : viscous damping coefficient of the isolator i in axes x, y, z, respectively 
θψψ ,, yx  : angular rotation around axes x, y, z, respectively 

θψψ &&& ,, yx  : angular velocity around axes x, y, z, respectively 

θψψ &&&&&& ,, yx  : angular acceleration around axes x, y, z, respectively 
Ixx,Iyy,Izz : principal moments of inertia relative to axes x, y, z; equal to 142000, 540000, 493000 N.m2, respectively 
 

 
 

 

 
Figure 3. Tri-dimensional supporting system for the rigid body 
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These equations can be re-written in matrix form as, 

 
0kxxcxm =++ &&&  (7) 

 
where  
m  : mass matrix 
k : stiffness matrix 
c : damping matrix 
x, x& , x&&  : displacements, velocity and acceleration vector, respectively 
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The elements of the stiffness matrix k are originated from the displacement coefficients in Eqs. (1) to (6) and 

expressed in Eqs. (11) to (16) as, 
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The elements of the damping matrix c are originated from the displacement coefficients in Eqs. (1) to (6) and 

expressed in Eqs. (17) to (22) as,  
 

∑ ∑−==∑ ====
= ==

16

1

16

1
1615

16

1
14131211 ,,0,

i i
yixizixi

i
xi lcclccccccc  (17) 

∑ ∑−==∑====
= ==

16

1

16

1
2624

16

1
,22252321 ,,0

i i
xiyiziyi

i
yi lcclccccccc  (18) 

∑ ∑==∑====
= ==

16

1

16

1
3534

16

1
,33363231 ,,0

i i
xiziyizi

i
zi lcclcccccc  (19) 

∑ ∑−=−=

∑ ∑ ∑+==∑==

= =

= = ==

16

1

16

1
4645

16

1

16

1

16

1

22
4443

16

1
4241

,

,,,,0

i i
zixiyiyixizi

i i i
ziziziyiyizizi

i
yi

llccllcc

lclcclcclccc
 (20) 

∑−=∑ ∑+=

∑ ∑−=−=∑ ==

== =

= ==

16

1
56

16

1

16

1

22
55

16

1

16

1
5453

16

1
5251

,

,,,0,

i
ziyixi

i i
xizizixi

i i
yixizixizi

i
zixi

llcclclcc

llcclccclcc
 (21) 

∑ ∑ ∑+=−=

∑ ∑−===∑−=

= = =

= ==

16

1

16

1

16

1

22
6665

16

1

16

1
646362

16

1
61

,

,,0,,

i i i
xiyiyixiziyixi

i
zixi

i
yixiyiyi

i
xi

lclccllcc

llccclcclcc
 (22) 

 
4. NATURAL FREQUENCIES OPTIMIZATION  

 
This work must search the best selection of isolators’ parameters, reducing or minimizing the sixth natural 

frequency of the system and permitting that the group operation be far from the excitement frequency. The function 
NLPSolve of the program Maple 10 is used in this work. The stiffness constants and damping coefficients of isolators 
are chosen as the variables for the non linear optimization problem with constraints.  

The minimization of the sixth natural frequency has to satisfy two constraints. The first is relative to limits over the 
stiffness constants, and the second one is relative to limits over the damping coefficients, according to technological and 
manufacturing specifications. The optimization problem is established as,  
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(23) 

 
where r=16 is the number of isolators. An optimization without parameters’ constraints produces null points. On the 
other hand, the constraints max max and cckk ≤≤  can be disregarded using great values of max max and ck  guaranteeing 
the inequality. During the optimization process, there is no control over cross of natural frequencies. Table 1 gives the 
coordinates of each isolator (i=1…16) relative to CM as shown in Fig. 4. 

 

 
 

Figure 4. Position of the isolator relative to CM 
 
 
 
 

Generator 
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Table 1. Coordinates position of the isolators 

 
Coordinates from CM (m) Isolator (i =1... 16) lxi lyi lzi 

1 2,999 1,464 1,440 
2 2,299 1,464 1,440 
3 1,599 1,464 1,440 
4 0,226 1,464 1,440 
5 -0,693 1,464 1,440 
6 -1,613 1,464 1,440 
7 -2,533 1,464 1,440 
8 -3,453 1,464 1,440 
9 -3,453 -1,364 1,440 
10 -2,533 -1,364 1,440 
11 -1,613 -1,364 1,440 
12 -0,693 -1,364 1,440 
13 0,226 -1,364 1,440 
14 1,599 -1,364 1,440 
15 2,299 -1,364 1,440 
16 2,999 -1,364 1,440 

 
The optimal stiffness constant and damping coefficient of the r=16 isolators must be obtained after running the 

optimization of Eq. (23), adopting 12 isolators type ISO/A ( N/m10x52.3 6mín =k  and N/m10x30.4 6máx =k ), and 4 

isolators type ISO/B ( N/m10x95.3 6mín =k  and N/m10x83.4 6máx =k ). The damping coefficients of all elements must 

satisfy rad/skg10x7.2 4mín ⋅=c and rad/skg10x15.4 4máx ⋅=c . The transversal and longitudinal stiffness constant and 
damping coefficient are equal to 20% of the corresponding vertical one value, as exposed by Rivin (2006) for precision 
equipment. Table 2 gives the founded optimal parameters and Table 3 shows the natural frequencies. 

 
Table 2. Optimized parameters of isolator 

 
Constant stiffness (N/m) Damping coefficient (kg rad/s) Isolator (i =1...16) Type kzi kxi = 0.2kzi kyi = 0.2kzi czi cxi = 0.2 czi cyi = 0.2 czi 

1, 3, 4, 5, 7, 8, 9, 10, 12, 
13, 14, 16 ISO/A 3.91x106 7.82x105 7.82x105 3.43x104 6.85x103 6.85 x103 

2, 6, 11, 15 ISO/B 4.39x106 8.78x105 8.78x105 3.68x104 7.35x103 7.35 x103 
 

Table 3. Natural frequencies after optimization 
 

Mode 1 2 3 4 5 6 
Damped natural frequency (Hz) 1,929 1,998 2,081 4,075 4,711 5,804 

 
5. CONCLUSIONS 

 
This work applies a numerical optimization to obtain the optimal parameters of isolators for reducing the maximum 

natural frequency of the group, so that the system operates far from the frequency of operation. The stiffness constant 
and damping coefficient of the isolators are the variables of the nonlinear optimization problem with constraints. 

For the geometrical conditions of the problem, the optimization algorithm supplies the following parameters: 
stiffness constant equal to 3.91x106 N/m for ISO/A and 4.39x106 N/m for ISO/B isolators, while the damping 
coefficient is equal to 3.43 kg·rad/s for all isolators. 

The natural frequencies for the group becomes between 1.92 and 5.80 Hz. 
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