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Abstract. Chaoscontrol may be understood as the use of tiny perturbations for the stabilization of unstable periodic
orbits embedded in a chaotic attractor. The idea that chaotic behavior may be controlled by small perturbations of
physical parameters allows this kind of behavior to be desirable in different applications. In this work, the application
of a variable structure controller to second order nonlinear systems is discussed. The approach is based on the sliding
mode control strategy and enhanced by an adaptive fuzzy algorithm to cope with modeling inaccuracies and external
disturbances. The general procedure is applied to a nonlinear pendulum and numerical results are presented in order
to demonstrate the control system performance. A comparison between the stabilization of general orbits and unstable
periodic orbits embedded in chaotic attractor is carried out showing that the chaos control can confer flexibility to the
system by changing the response with low power consumption. Since noise contamination is unavoidable in experimental
data acquisition, it is important to evaluate its effect on chaos control procedures. This work also investigates the effect
of noise on the proposed control scheme, verifying the influence on the system stabilization and on the required control
action.
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1. INTRODUCTION

Chaotic response is related to a dense set of unstable periodic orbits (UPOs) and the system often visits the neighbor-
hood of each one of them. Moreover, chaos has sensitive dependence to initial conditions, which implies that the system
evolution may be altered by small perturbations. Chaos control is based on the richness of chaotic behavior and may be
understood as the use of tiny perturbations for the stabilization of an UPO embedded in a chaotic attractor. It makes this
kind of behavior to be desirable in a variety of applications, since one of these UPO can provide better performance than
others in a particular situation.

The first chaos control method has been proposed by Ottet al. (1990), nowadays known as the OGY (Ott-Grebogi-
Yorke) method. This is a discrete technique that considers small perturbations applied in the neighborhood of the desired
orbit when the trajectory crosses a specific surface, such as some Poincaré section. The delayed feedback control (Pyragas,
1992), on the other hand, was the first continuous method proposed for controlling chaos, which states that chaotic systems
can be stabilized by a feedback perturbation proportional to the difference between the present and the delayed state of
the system.

Literature presents some contributions related to the analysis of chaos control in pendulum systems (Pereira-Pinto
et al., 2004, 2005; Wang and Jing, 2004; Yagasaki and Yamashita, 1999) using different approaches. De Paula and Savi
(2009b) propose a multiparameter semi-continuous method based on OGY approach to perform the chaos control of a
nonlinear pendulum. Afterwards, De Paula and Savi (2009a) use a continuous delayed-feedback scheme and Bessaet al.
(2009) propose an adaptive fuzzy sliding mode based approach to control chaos in the same nonlinear pendulum.

Sliding mode control is a very attractive control scheme because of its robustness against both structured and unstruc-
tured uncertainties as well as external disturbances. Nevertheless, the discontinuities in the control law must be smoothed
out to avoid the undesirable chattering effects. The adoption of properly designed boundary layers have proven effective
in completely eliminating chattering, however, leading to an inferior tracking performance.

In this work, a control scheme based on the sliding mode strategy and enhanced by an adaptive fuzzy algorithm is
employed to chaos control. The adaptive fuzzy inference system approximates the unknown system dynamics within
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boundary layer of a smooth sliding mode controller, improving the tracking performance. As an application of the general
procedure,the chaos control of a nonlinear pendulum that has a rich response, presenting chaos and transient chaos (De
Paulaet al., 2006), is treated. Numerical simulations are carried out illustrating the stabilization of some UPOs of the
chaotic attractor showing an effective response. Unstructured uncertainties related to unmodeled dynamics and structured
uncertainties associated with parametric variations are both considered in the robustness analysis. A comparison between
the stabilization of a general orbit and unstable periodic orbits embedded in chaotic attractor is performed showing the
less energy consumption related to UPOs. Moreover, the analysis from noisy time series is also conducted showing the
effectiveness of the controller to stabilize unstable orbits.

2. ADAPTIVE FUZZY SLIDING MODE CONTROL

As demonstrated by Bessa and Barrêto (2010), adaptive fuzzy algorithms can be properly embedded in sliding mode
controllers to compensate for modeling inaccuracies, in order to improve the trajectory tracking of uncertain nonlinear
systems. It has also been shown that adaptive fuzzy sliding mode controllers are suitable for a variety of applications
ranging from remotely operated underwater vehicles (Bessaet al., 2008) to space satellites (Guanet al., 2005).

On this basis, let us consider a second order dynamical system represented by the following equation of motion:

φ̈ = f(φ, φ̇, t) + hu+ p(φ, φ̇) (1)

whereφ andφ̇ represent the state variables,u is the control input,h is the control gain,f : R3 → R is a nonlinear function
that represents system dynamics andp represents modeling inaccuracies.

Now, letS(t) be a sliding surface defined in the state space by the equations(e, ė) = 0, with the functions : R2 → R

satisfying

s(e, ė) = ė+ λe (2)

wheree = φ − φd is the tracking error,̇e is the first time derivative ofe, φd is the desired trajectory andλ is a strictly
positive constant.

The control of the system dynamics (1) is done by assuming a sliding mode based approach, defining a control law
composed by an equivalent controlû = ĥ−1(−f̂ − p̂+ φ̈d − λė) and a discontinuous term−K sgn(s):

u = ĥ−1(−f̂ − p̂+ φ̈d − λė)−K sgn(s) (3)

whereĥ, f̂ , andp̂ are estimates ofh, f andp, respectively,K is a positive control gain andsgn(·) is defined as

sgn(s) =

 −1 if s < 0
0 if s = 0

+1 if s > 0
(4)

Regarding the development of the control law, the following assumptions should be made:

Assumption 1 The statesφ andφ̇ are available.

Assumption 2 The desired trajectoriesφd and φ̇d are once differentiable in time. Furthermoreφd, φ̇d and φ̈d are
available and with known bounds.

Assumption 3 The functionf is unknown but bounded, i.e.,|f̂ − f | ≤ F .

Assumption 4 The input gainh is unknown but positive and bounded, i.e.,0 < hmin ≤ h ≤ hmax.

Assumption 5 The termp is unknown but bounded, i.e.,|p| ≤ P.

Based on Assumption 4 and considering that the estimateĥ could be chosen according to the geometric meanĥ =√
hmaxhmin, the bounds ofh may be expressed asH−1 ≤ ĥ/h ≤ H, whereH =

√
hmax/hmin.

Underthis condition, the gainK should be chosen according to

K ≥ Hĥ−1(η + |p̂|+ P + F) + (H− 1)|û| (5)
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hereη is a strictly positive constant related to the reaching time.
At this point, it should be highlighted that the control law (3), together with (5), is sufficient to impose the sliding

condition

1
2
d

dt
s2 ≤ −η|s| (6)

and, consequently, the finite time convergence to the sliding surfaceS. For a proof of the convergence properties of the
aforementioned controller (3) considering the gain (5), the reader is referred to (Bessaet al., 2009).

In order to obtain a good approximation top, the estimatêp is computed directly by an adaptive fuzzy algorithm. The
adopted fuzzy inference system is the zero order TSK (Takagi–Sugeno–Kang), whose rules can be stated in a linguistic
manner as follows:

If φ is Φr andφ̇ is Φ̇r thenp̂r = P̂r , r = 1, 2, . . . , N

whereΦr andΦ̇r are fuzzy sets, whose membership functions could be properly chosen, andP̂r is the output value of
each one of theN fuzzy rules.

Considering that each rule defines a numerical value as outputP̂r, the final output̂p can be computed by a weighted
average:

p̂(φ, φ̇) = P̂TΨ(φ, φ̇) (7)

whereP̂ = [P̂1, P̂2, . . . , P̂N ] is the vector containing the attributed valuesP̂r to each ruler, Ψ(φ, φ̇) = [ψ1, ψ2, . . . , ψN ]
is a vector with componentsψr(φ, φ̇) = wr/

∑N
r=1 wr andwr is the firing strength of each rule, which can be computed

from the membership values with any fuzzy intersection operator (t-norm).
The estimation of̂p is done by considering that the vector of adjustable parameters can be automatically updated by

the following adaptation law:

˙̂P = ϕsΨ(φ, φ̇) (8)

whereϕ is a strictly positive constant related to the adaptation rate.
Now, in order to overcome the undesirable chattering effects, a thin boundary layer,Sε, in the neighborhood of the

switching surface can be adopted (Slotine, 1984):

Sε =
{

(e, ė) ∈ R2
∣∣ |s(e, ė)| ≤ ε}

whereε is a strictly positive constant that represents the boundary layer thickness.
The boundary layer is achieved by replacing the sign function by a continuous interpolation insideSε. There are

several options to smooth out the ideal relay but the most common choice is the saturation function:

sat(s/ε) =
{

sgn(s) if |s/ε| ≥ 1
s/ε if |s/ε| < 1

In this way, to avoid chattering, a smooth version of Eq. (3) is defined:

u = ĥ−1(−f̂ − p̂+ φ̈d − λė)−K sat(s/ε) (9)

Nevertheless, it should be emphasized that the substitution of the discontinuous term by a smooth approximation
inside the boundary layer turns the perfect tracking into a tracking with guaranteed precision problem, which actually
means that a steady-state error will always remain. According to Bessa (2009) and considering a second order system
with a smooth sliding mode controller, the tracking error vector will exponentially converge to a closed regionΛ =
{(e, ė) ∈ R2 | |s(e, ė)| ≤ ε and|e| ≤ λ−1ε and|ė| ≤ 2ε }.

3. NONLINEAR PENDULUM

As an application of the control procedure, a nonlinear pendulum is investigated. This pendulum is based on an ex-
perimental set up, previously analyzed by Franca and Savi (2001) and Pereira-Pintoet al. (2004). De Paulaet al. (2006)
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presented a mathematical model to describe the dynamical behavior of the pendulum and the corresponding experimen-
tally obtained parameters.

The schematic picture of the considered nonlinear pendulum is shown in Fig. 1. Basically, the pendulum consists of
an aluminum disc (1) with a lumped mass (2) that is connected to a rotary motion sensor (4). This assembly is driven by
a string-spring device (6) that is attached to an electric motor (7) and also provides torsional stiffness to the system. A
magnetic device (3) provides an adjustable dissipation of energy. An actuator (5) provides the necessary perturbations to
stabilize this system by properly changing the string length.

Figure 1. (a) Nonlinear pendulum – (1) metallic disc; (2) lumped mass; (3) magnetic damping device; (4) rotary motion
sensor(PASCO CI-6538); (5) anchor mass; (6) string-spring device; (7) electric motor (PASCO ME-8750). (b) Parameters

and forces on metallic disc. (c) Parameters from driving device. (d) Experimental apparatus.

In order to obtain the equations of motion of the experimental nonlinear pendulum it is assumed that system dissipa-
tion may be expressed by a combination of a linear viscous dissipation together with dry friction. Therefore, denoting the
angular position asφ, the following equation is obtained (De Paulaet al., 2006):

φ̈+
ζ

I
φ̇+

µ sgn(φ̇)
I

+
kd2

2I
φ+

mgD sin(φ)
2I

=
kd

2I

(√
a2 + b2 − 2ab cos(ωt)− (a− b)−∆l

)
(10)

whereω is the forcing frequency related to the motor rotation,a defines the position of the guide of the string with respect
to the motor,b is the length of the excitation crank of the motor,D is the diameter of the metallic disc andd is the diameter
of the driving pulley,m is the lumped mass,ζ represents the linear viscous damping coefficient, whileµ is the dry friction
coefficient;g is the gravity acceleration,I is the inertia of the disk-lumped mass,k is the string stiffness and∆l is the
length variation in the spring provided by the linear actuator (5).

De Paulaet al.(2006) show that this mathematical model presents results that are in close agreement with experimen-
tal data. The pendulum equation can be expressed in terms of Eq. (1) by assuming thath = kd/2I, u = −∆l, f can be
obtained from Eq. (1) and Eq. (10), and the termp represents modeling inaccuracies.

4. CONTROLLING THE NONLINEAR PENDULUM

The controller capability is now investigated by considering numerical simulations. The fourth order Runge-Kutta
method is employed and sampling rates of 107 Hz for control system and 214 Hz for dynamical model are assumed.
The model parameters are chosen according to (De Paulaet al., 2006):I = 1.738× 10−4 kg m2; m = 1.47× 10−2 kg;
k = 2.47 N/m; ζ = 2.368×10−5 kg m2/s;µ = 1.272×10−4 N m;a = 1.6×10−1 m; b = 6.0×10−2 m; d = 4.8×10−2 m;
D = 9.5× 10−2 m andω = 5.61 rad/s.

For tracking purposes, different UPOs are identified using the close return method (Pereira-Pintoet al., 2004) and
two of these are chosen as desired trajectories in the numerical studies that follows.
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To ratify the robustness of the proposed control scheme against modeling imprecisions, the termµ sgn(φ̇)/I in
Eq. (10) will be treated as unmodeled dynamics and not considered in controller design. In this way, regarding con-
troller parameters, the following values were chosen:F = 1.2; P = 1.1; H = 1.0; ε = 1.0; λ = 0.8; η = 0.05 and
ϕ = 3.0.

Concerning the fuzzy system, triangular and trapezoidal membership functions are adopted for bothΦr andΦ̇r, with
the central values defined respectively asC0 = {0.0} andC1 = {−10.0 ; −1.0 ; −0.1 ; 0.0 ; 0.1 ; 1.0 ; 10.0}×10−1. The
chosen fuzzy intersection operator was the product t-norm. It is also important to emphasize that the vector of adjustable
parameters is initialized with zero values,P̂ = 0, and updated at each iteration step according to Eq. (8).

In order to evaluate the control system performance, a period-1 UPO was identified using the close return method De
Paulaet al. (2006) and chosen to be stabilized. The obtained results are presented in Fig. 2.

(a) Phase space. (b) Control action.

(c) Tracking error. (d) Convergence of̂p to µ sgn(φ̇)/I.

Figure2. Tracking of period-1 UPO.

As observed in Fig. 2, even in the presence of modeling inaccuracies, the adaptive fuzzy sliding mode controller
(AFSMC) is capable to provide the trajectory tracking with a small associated error. It should be emphasized that the
control actionu represents the length variation in the string and only tiny variations are required to provide such different
dynamic behaviors, which actually allows a great flexibility for the controlled nonlinear system.

It can be also verified that the proposed control law provides a smaller tracking error when compared with the conven-
tional sliding mode controller (SMC), Fig. 2(c). By considering simulation purposes, the AFSMC can be easily converted
to the classical SMC by setting the adaptation rate to zero,ϕ = 0. The improved performance of AFSMC over SMC is
due to its ability to recognize and compensate the modeling imprecisions, Fig. 2(d). The time evolution of the input-output
surface of the fuzzy inference system is shown in Fig. 3 after four different iteration steps.

Now, in order to demonstrate that the adopted control scheme can deal with both structured (parametric) and unstruc-
tured uncertainties (unmodeled dynamics), an uncertainty of±20% over the value of the viscous damping coefficient,ζ,
is considered and the dry friction is treated as unmodeled dynamics and not taken into account within the design of the
control law. On this basis, the estimatesζ̂ = 1.9 × 10−5 kg m2/s andµ̂ = 0 are assumed. The other estimates in bothf̂
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Figure 3. Convergence of the input-output surface of the fuzzy inference system after four different iteration steps.

andĥ arechosen based on the assumption that model coefficients are perfectly known.
The idea of the UPO control is interesting since these orbits are embedded in the chaotic attractor and, therefore are

natural orbits related to the system dynamics. Hence, it is an important task to evaluate a comparison of the control action
required to stabilize some UPOs and a general orbit (artificial or non-natural). Basically, three different situations are
treated. In the first case, Fig. 4(a) and Fig. 4(d), a general artificial orbit[φd, φ̇d] = [1.0 + 2.35 sin(2πt), 4.70π cos(2πt)]
is considered. A second case, on the other hand, stabilizes a period-1 UPO, Fig. 4(b) and Fig. 4(e). Although both
orbits are similar, it should be highlighted that the controller requires less effort to stabilize the UPO. Even with more
complicated orbits, as is the case of the period-4 UPO shown in Fig. 4(c), the amplitude of the control action, Fig. 4(f), is
significantly smaller when compared with the control effort required to stabilize the general orbit. The control of unstable
periodic orbits is the essential aspect to be explored in chaos control that can confer flexibility to the system with low
energy consumption.

Since noise contamination is unavoidable in experimental data acquisition, it is important to evaluate its effect on
chaos control procedures. In order to simulate experimental noisy data sets, a white Gaussian noise is introduced in the
signal:

x̄(t) = x(t) + ε (11)

wherex̄ represents the measured state variable,x the clean signal andε the white Gaussian noise. White Gaussian noise
is generated using the polar form of Box-Muller transformation (Box and Muller, 1958). The noise level is parameterized
by the standard deviation of the clean signal (Ssignal). Therefore, the standard deviation of the noise,Snoise, is a fraction
γ of Ssignal:

γ =
Snoise

Ssignal
× 100 (%) (12)

Figures 5–13 shows the stabilization of a period-1 UPO, a period-2 UPO and a period-4 UPO with three different
values ofγ: 1%, 3% and5%. The phase space, the control action and the Poincaré section embedded in the related noisy
strange attractor are presented.
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(a) General orbit. (b) Period-1 UPO. (c) Period-4 UPO.

(d) u for general orbit. (e)u for period-1 UPO. (f) u for period-4 UPO.

Figure 4. Control action required to stabilize a general orbit and 2 different UPOs.

(a) Phase space. (b) Control action. (c) Poincaré section.

Figure5. Tracking of a period-1 UPO withγ = 1%.

(a) Phase space. (b) Control action. (c) Poincaré section.

Figure6. Tracking of a period-1 UPO withγ = 3%.
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(a) Phase space. (b) Control action. (c) Poincaré section.

Figure7. Tracking of a period-1 UPO withγ = 5%.

(a) Phase space. (b) Control action. (c) Poincaré section.

Figure8. Tracking of a period-2 UPO withγ = 1%.

(a) Phase space. (b) Control action. (c) Poincaré section.

Figure9. Tracking of a period-2 UPO withγ = 3%.

(a) Phase space. (b) Control action. (c) Poincaré section.

Figure10. Tracking of a period-2 UPO withγ = 5%.
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(a) Phase space. (b) Control action. (c) Poincaré section.

Figure11. Tracking of a period-4 UPO withγ = 1%.

(a) Phase space. (b) Control action. (c) Poincaré section.

Figure12. Tracking of a period-4 UPO withγ = 3%.

(a) Phase space. (b) Control action. (c) Poincaré section.

Figure13. Tracking of a period-4 UPO withγ = 5%.

As observed in Figs. 5–13, the proposed control scheme allows the UPOs stabilization even when noisy signals are
considered.Nevertheless, it can be verified that the increase of the noise amplitude causes a proportional increase of the
control effort and a decrease in the tracking performance.

5. CONCLUSIONS

The present contribution presents the application of an adaptive fuzzy sliding mode controller for chaos control.
Numerical simulations of a nonlinear pendulum with chaotic response is of concern. The control system performance
is investigated showing the tracking of a generic orbit as well as for UPO stabilization. It is shown that the controller
needs less effort to stabilize an UPO when compared with a general non-natural orbit. This is an essential point related
to chaos control that can confer flexibility to the system dynamics changing response with low power consumption. The
robustness of the proposed control scheme against modeling inaccuracies are investigated evaluating both unstructured
and parametric uncertainties. Noisy signals are also investigated showing the controller capability to deal with this kind of
uncertainty. In general, the proposed procedure is able to perform chaos control even in situations where high uncertainties
are involved.
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