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When metallic structural elements are submitted to inelastic cyclic strain, a very important phenomenon must be 
considered: the thermomechanical coupling. This kind of solicitation promotes heating of the elements and a 
considerable amount of heat can be generated in situations where high loading rates and/or high amplitudes of inelastic 
strain are of concern (Simo and Miehe, 1992; Pacheco, 1994; Barbosa HW�DO�, 1995; Pacheco and Costa-Mattos, 1997; 
Stabler and Baker, 2000, Rosakis HW� DO., 2000; Longère and Dragon, 2008; Costa-Mattos and Pacheco, 2009). The 
temperature rise of mechanical component depends on the loading amplitude, frequency and temperature boundary 
conditions. It promotes a mechanical properties decrease, which in turn promotes a plastic strain increase. This 
phenomenon is known as thermomechanical coupling and can accelerate the structural degradation process.  

Usually, the material temperature variation due to thermomechanical coupling is not taken into account in traditional 
low-cycle fatigue models, so unreal life predictions may be obtained. Since there are situations where such couplings                                          
cannot be neglected and a physically more realistic model must take it in consideration, this paper presents a continuum 
mechanics model with internal variables to study the thermomechanical coupling effects of metallic components 
submitted to inelastic loadings (Pacheco, 1994; Lemaitre and Chaboche, 1990). Figure 1 shows the feedback 
phenomenon that can be observed in metallic elements subjected to inelastic strain loadings (Nolte, 2007; Nolte HW�DO�, 
2007).  

A thermodynamic approach allows a proper identification of the thermomechanical coupling in the mechanical and 
thermal equations, while a numerical procedure is developed based on an operator split technique associated with an 
iterative numerical scheme in order to deal with the non-linearities in the formulation. Three uncoupled problems are 
involved to solve coupled governing: thermal, thermoelastic and elastoplastic behaviors. Classical finite element 
method is employed for spatial discretization in all uncoupled problems and numerical simulations of a steel plate with 
a stress concentrator subjected to inelastic loadings are presented and analyzed. Results suggest that the proposed model 
is capable of capturing important localization phenomena related to plastic strain localization due thermomechanical 
coupling� 
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Figure 1. Thermomechanical coupling in metallic elements subjected to inelastic strain loadings. 
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By considering thermodynamic forces, defined from the Helmholtz free energy,ψ, and thermodynamic fluxes, 
defined from the pseudo-potential of dissipation, φ�� it is possible to formulate constitutive equations within the 
framework of continuum mechanics and the thermodynamics of irreversible processes, by  (Lemaitre and Chaboche, 
1990; Pacheco, 1994). 

For this, a Helmholtz free energy is proposed as a function of total strain, ε ? @ , temperature, 7 and observable 

variables. Besides, the following internal variables are considered: plastic strain,
AB Cε , kinematic hardening, F ? @ ,  and 

isotropic hardening, S. Therefore, the following free energy is proposed, employing indicial notation where summation 
convention (L = 1,2,3) is evoked (Eringen, 1967), except when indicated: 
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where ρ is the material density, : J  is the elastic energy density, :K  is the energy density associated to the hardening and 
: L  is the energy density associated with the temperature, defined as: 
 

����
(������������

(�7��: MN NN NOMN NN NMP NP NMP NP NMP NP NQ εε
ν

αεε
ν

νεεεε
ν

εε −
−

−



 −

−
+−−

+
=−  

[ ]R ST UT UT UV WXYZ[[\]Y[^ −++= )/1(),,( 2
1      ;    

2
    d )log()(W

0

2
21∫ +=

_
__ `aa` ρξξρ  (2) 

      

where 7 b  is a reference temperature, ( is the Young modulus, ν is the Poisson ratio, D is a material parameter associated 
with kinematic hardening, while E and G are material parameters associated with isotropic hardening. &1 and &2 are 

positive constants. The increment of elastic strain is defined as c defc dc dgc d G7GGG δαεεε −−= . The last term is associated 

with thermal expansion and the parameter α L  is the coefficient of linear thermal expansion. 
The general formulation of this model was developed and previously applied to the study of various related 

problems (Pacheco, 1994; Pacheco and Mattos, 1997; Pacheco HW�DO�, 2001; Oliveira HW�DO�, 2003; Oliveira, 2004; Silva 
HW�DO�, 2004). A detailed description of this constitutive model may be obtained in the cited references. 

This contribution considers life prediction of metallic plane truss structures subjected to cyclic inelastic loadings. 
From the mechanical point of view, it is assumed that the specimen is submitted to uniaxial strain.  Concerning thermal 
characteristics, it is assumed that the specimen experiments a heat conveccion through its surface. Under these 
assumptions, a one-dimensional model is formulated and tensor quantities presented in the general formulation may be 
replaced by scalar quantities. For this situation the thermodynamics forces (σ ? @ , 3 ? @ , hi j% ,% k , %l , V), respectively associated 

with state variables ),,,,( 7SF m nom nm n εε , are defined as follows: 
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where ; and 5 are auxiliary variables directly related to kinematic and isotropic hardenings, respectively. In order to 
describe dissipation processes, it is necessary to introduce a potential of dissipation �T�S�F�� Í ���εφ , which can be split 

into two parts: )(),,(),,,( TSFTSF ÎÏ ÐÑÏ ÐÒÏ ÐÑÏ Ð φεφεφ += ������ . This potential can be written through its 

dual )(),,,(),,,( *** J5;3J5;3 ÓÔ ÕÔ ÕÖÔ ÕÔ Õ φφφ += , as  ),,( = ** 5;3, × Ø× ØÙÚφ  and  
2

 = 2* J7Û Λφ , where J = (1/7) ∂7/∂[ and Λ 

is the coefficient of thermal conductivity; ),,(* 5;3, Ü ÝÜ ÝÞ  is the indicator function associated with elastic domain 

(Lemaitre and Chaboche, 1990),  
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where 6 ã  is the material yield stress, ( )3/ä�äå æå æçå æ σδσσ −= � and ( )3/è�èé êé êëé ê ;;; δ−= . A set of evolution laws 

obtained from φ
�characterizes dissipative processes, 
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where λ is the plastic multiplier (Lemaitre and Chaboche, 1990) from the classical theory of plasticity, sign([) = [ / |[|, 
ϕ  is a material parameter associated with kinematic hardening and T is the heat flow. By assuming that the specific heat 

is 22 /)/( 7:7F ô ∂∂−= ρ  and also considering the set of constitutive Eqs. (3) and (5), the energy equation can be 

written as (Pacheco, 1994): 
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where K is the convection coefficient, 7∞ is the surrounding temperature, 3HU is the perimeter and $ is the cross section 
area. Terms Dþ  and D ÿ  are, respectively, internal and thermal coupling. The first one appears in the right hand side of the 
energy equation and is called internal coupling. It is always positive and has a role in the energy equation similar to a 
heat source in the classical heat equation for rigid bodies. The last term in the right hand side of the energy equation can 
be positive or negative and is called the thermal coupling.  
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The proposed model is applied to study the thermomechanical coupling effects of metallic components submitted to 

inelastic loadings. A non-linear finite element model with temperature dependent properties is presented to study the 
effect of thermomechanical coupling in mechanical components subjected to inelastic deformation. Numerical 
simulations are performed with commercial finite element code ANSYS (ANSYS, 2006), employing coupled thermal 
and mechanical fields element PLANE13 (4 nodes bidimensional element with displacement and temperature degrees 
of freedom) for spatial discretization. The final meshes are defined after a convergence analysis.  

The numerical procedure here proposed is based on the operator split technique (Ortiz HW�DO�, 1983; Pacheco, 1994) 
in order to deal with nonlinearities in the formulation. With this assumption, coupled governing equations are solved 
from two uncoupled problems: thermal and thermo-elastoplastic. In this article, finite element method is employed to 
perform spatial discretization of governing equations. Therefore, the following moduli are considered: 

7KHUPDO� 3UREOHP� �� Comprises a conduction problem with surface convection. Themomechanical coupling is 
considered as a heat source. Material properties depend on temperature and, therefore. Classical finite element method 
is employed for spatial discretization.  

7KHUPR�HODVWRSODVWLF�3UREOHP���Stress and strain fields are evaluated from temperature distribution obtained in the 
thermal problem and from the mechanical loading. Classical finite element method is employed for discretization. 

To implement the operator split technique and the themomechanical coupling as a heat source, a program developed 
in APDL (ANSYS Parametric Design Language) is used. Through this approach the internal coupling associated to 
plastic deformation and kinematic hardening is calculated for each time step from stress and plastic strain fields 
obtained from the thermo-elastoplastic problem results of the previous step. A small step and a convergence analysis 
guarantee the convergence of the results. A plate with a central circular hole is considered to assess de effect of 
thermomechanical coupling in mechanical components with stress concentrators. The plate has a length of 150 mm, a 
width of 50 mm and a 10 mm radius circular central hole. A plane stress condition is considered and symmetry 
conditions are adopted to reduce the computational cost. 
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A prescribed senoidal displacement loading with a frequency of 1 Hz is adopted. A linear kinematic hardening is 
considered. It is assumed that the specimen is at an initial temperature of 26 ºC. This temperature is similar to the 
ambient temperature and a convection coefficient, K, of 10 W/m2 °C is used. Convection boundary condition is 
prescribed at the specimen surface. It is considered that the grips temperature remains constant and a constant 
temperature condition is adopted at the specimen end. Temperature dependent thermomechanical properties are adopted 
(Oliveira, 2004, 2008). In order to allow the evaluation of the thermomechamical effects in the plastic strain 
localization, two models are considered:  

 
 

8QFRXSOHG� PRGHO� neglects the thermomechanical coupling terms present in Eq. (6) and therefore, the thermal 
problem is solved as a rigid body; 

 
&RXSOHG�PRGHO� considers the thermomechanical coupling terms. 

 
Figure 2D� shows the mesh obtained after a convergence analysis with the boundary conditions and the applied 

loading. Figure 2E shows temperature distribution at the last loading cycle for the FRXSOHG model. 
Figure 3 presents plastic strain and YRQ�0LVHV equivalent stress distribution for XQFRXSOHG and FRXSOHG PRGHOV at the 

last loading cycle. Plastic strain localization can be observed at the middle of the specimen where a stress concentrator 
exists. The localization phenomenon is promoted by the feedback effect due to thermomechanical coupling. The 
thermal boundary conditions and the temperature depended mechanical properties promotes the localization of thermal 
and plastic strain processes at the stress concentrator. 

 

   
(D)       (E) 

   

       

Figure 2. Mesh with boundary conditions and loadings (D) and temperature distribution for the FRXSOHG�PRGHO. 
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Figure 3. Equivalent plastic strain distribution (D) and YRQ�0LVHV equivalent stress distribution (E). 8QFRXSOHG�PRGHO.  
Equivalent plastic strain distribution (F) and YRQ�0LVHV equivalent stress distribution (G). &RXSOHG�PRGHO. 

 
Figure 4 presents the evolution of the stress-strain curve (\ axis), temperature, equivalent plastic strain and internal 

coupling term (Dþ ) for XQFRXSOHG and FRXSOHG PRGHOV. Results show that the XQFRXSOHG PRGHO predicts a stabilized cycle 
for all variables whereas for the FRXSOHG� PRGHO maximum temperature and maximum plastic strain presents a 
continuous rise. A detailed view of the last 10 cycles is presented in Figs. 4E�G. Temperature presents a cyclic behavior 
that follows the loading cycle. A temperature rise is observed in both tension and compression phases, whenever plastic 
strain is present. In the absence of plastic strain, cooling is observed promoted by convection and conduction 
mechanisms. Internal coupling term (Dþ ) presents a similar behavior as it depends on the plastic strain evolution. It is 
important to observe that only positive values are observed as pointed in section 2. Equivalent plastic strain presents 
larger values for the FRXSOHG�PRGHO.  
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Figure 4. Stress-strain curve (D). Temperature (E), equivalent plastic strain (F) and the internal coupling term (G) 
evolution. 
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In this paper an anisothermal constitutive model with internal variables based on continuum damage mechanics is 
proposed to study the thermomechanical coupling effects in elastoplastic round specimens subjected to inelastic 
mechanical loadings. This formulation provides a rational methodology to study complex phenomena like the amount 
of heat generated during plastic strain of metals and how it affects its structural integrity. The numerical procedure 
developed is based on the operator split technique and allows one to deal with the nonlinearities in the formulation 
using traditional tested classical numerical methods, as the finite element method which is used for spatial 
discretization. In order to allow the evaluation of the thermomechamical effects in the plastic strain localization, two 
models are considered: XQFRXSOHG�PRGHO, where the thermal problem is solved as a rigid body, and the FRXSOHG�PRGHO 
that considers the thermomechanical coupling terms. Numerical simulations considering a plate with a central circular 
hole subjected to inelastic loadings are presented and analyzed. Results show that the XQFRXSOHG� PRGHO predicts a 
stabilized cycle for all variables whereas for the FRXSOHG PRGHO maximum temperature and maximum plastic strain 
presents a continuous rise. Results suggest that the proposed model is capable of capturing important localization 
phenomena related to plastic strain evolution.  
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