

VI CONGRESSO NACIONAL DE ENGENHARIA MECÂNICA VI NATIONAL CONGRESS OF MECHANICAL ENGINEERING 18 a 21 de agosto de 2010 – Campina Grande – Paraíba - Brasil August 18 – 21, 2010 – Campina Grande – Paraíba – Brazil

Vibrações de sistemas mecânicos com amortecimento não proporcional.

Ana Lúcia Grici Zacarin Mamede, analu@cefetsp.br Whisner Fraga Mamede, whisnerfraga@yahoo.com.br

Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Campus Sertãozinho, Rua Américo Ambrósio, 269, Jd. Canaã. Cep: 14.169-263, Sertãozinho-SP.

Resumo: Muitos métodos são sugeridos para encontrar a resposta de sistemas com amortecimento não-proporcional, ou pelo menos estabelecer um critério para quando o amortecimento não-proporcional pode ser aproximado por meio de amortecimento proporcional. Neste trabalho, pretende-se, por meio de simulações de modelos de quatro graus de liberdade, verificar o comportamento dos autovalores resultantes para amortecimento proporcional e nãoproporcional, admitindo-se a classificação de Caughey e O'Kelly para a identificação do tipo de amortecimento. Observa-se que, para o caso de amortecimento não-proporcional, o método de cálculo dos autovetores e autovalores leva a modificações na magnitude dos autovalores. Este trabalho visa abordar uma discussão sobre as diferenças encontradas entre o valor verdadeiro e o valor aproximado destes autovalores para o caso de um sistema proposto de 4 graus de liberdade, para dois casos distintos, em que os amortecimentos são variados.

Palavras-chave: Vibrações Mecânicas, Amortecimento não proporcional, Caughey e O'Kelly.

Abstract: Many methods are suggested to find the response of systems with non-proportional damping, or at least establish a criterion for when non-proportional damping can be approximated by a proportional damping. In this work, it is intended, through model simulations fo three and four degrees of freedom, check the behavior of the eigenvalues for proportional and non-proportional damping, assuming Caughey and O'Kelly's classification for the identification of the type of damping. It was observed that in case of non-proportional damping, the method of calculating the eigenvectors and eigenvalues leads to changes in the magnitude of the eigenvalues. This word aims to address a discussion on the differences between true values and approximate values of these eigenvalues.

Keywords: Mechanical Vibrations, non-proportional damping, Caughey and O'Kelly.

1. INTRODUÇÃO

Sistemas dinâmicos reais são amortecidos, pois possuem algum mecanismo de dissipação de energia ou amortecimento. Para se aplicar as técnicas da análise modal de sistemas não-amortecidos em sistemas amortecidos, é necessário propor a existência de um amortecimento proporcional, ou seja, um tipo especial de amortecimento viscoso que implica numa matriz de amortecimento que é uma combinação linear das matrizes de massa e de rigidez. Esse tipo de modelo para a matriz de amortecimento é conhecido como "amortecimento de Rayleigh" ou "amortecimento clássico". Os modos de vibrar de sistemas com amortecimento de Rayleigh preservam a simplicidade dos modos de vibrar reais de um sistema não-amortecido.

Nem sempre a matriz de amortecimento pode ser diagonalizada pela mesma transformação que diagonaliza as matrizes de massa e de rigidez. Caso a matriz de amortecimento seja diagonalizada pela mesma transformação, o sistema possuirá somente modos de vibrar clássicos. Caso contrário, possuirá modos complexos. Caughey e O'Kelly, em 1965, propuseram as condições, que são válidas até os dias atuais, que um sistema dinâmico amortecido deve satisfazer para que possua modos clássicos. Os pesquisadores propuseram também uma expressão para a matriz de amortecimento, em função das matrizes de massa e de rigidez, tal que o sistema possa ser desacoplado utilizando-se os modos de vibrar não-amortecidos e provaram que o amortecimento de Rayleigh é um caso particular desta expressão mais completa.

1.1. Amortecimento Proporcional e Não Proporcional

Um sistema dinâmico linear amortecido pode ser representado por um modelo com n graus de liberdade. Em sistemas discretos, a equação do movimento é escrita da seguinte maneira:

$$[m]\{\ddot{w}\} + [c]\{\dot{w}\} + [k]\{w\} = \{f\}$$
(1)

sendo [m] a matriz-massa, [c] a matriz-amortecimento e [k] a matriz-rigidez do modelo, $\{w\}$ o vetor deslocamento, $\{\dot{w}\}$ o vetor-velocidade, $\{\ddot{w}\}$ o vetor aceleração e $\{f\}$ o vetor força externa aplicada ao sistema.

A matriz [m] é simétrica e positiva definida. Por outro lado [k] e [c] são positivas-definidas ou positiva semidefinida. Quando não há excitação externa, ou seja, $\{f\} = \{0\}$ em (1) pode ser escrita da seguinte maneira:

$$[m]\{\ddot{w}\} + [c]\{\dot{w}\} + [k]\{w\} = \{0\}$$
(2)

Uma vez que [m] e [k]são simétricas e [m] é positiva-definida, é sempre possível encontrar uma transformação de coordenadas que remove os termos de acoplamento. Para o caso sem amortecimento a transformação de coordenadas $\{w\} = [\Phi] \{q\}$ diagonaliza a matriz [m] e [k]. Substituindo esta transformação em (1) e pré-multiplicando por $[\Phi]^T$, obtém-se:

$$[\Phi]^{T}[m][\Phi][\ddot{q}] + [\Phi]^{T}[c][\Phi][\dot{q}] + [\Phi]^{T}[k][\Phi][q] = [\Phi]^{T}\{f\}$$
(3)

ou
$$[M][\ddot{q}] + [C][\dot{q}] + [K][q] = \{0\}$$
 (4)

De acordo com as propriedades de ortogonalidade dos modos normais:

$$[M] = [\Phi]^T [m] [\Phi] \text{ \'e uma matriz diagonal}$$
(5)

$$[K] = [\Phi]^T [k] [\Phi] \text{ é uma matriz diagonal}$$
(6)

$$[C] = [\Phi]^T [c] [\Phi] \quad \text{não \'e necessariamente diagonal}$$
(7)

A Equação (4) será desacoplada, se e somente se $[\Phi]^T[c][\Phi]$ for diagonal. Quando isso ocorre, o sistema terá amortecimento denominado proporcional e a equação (2) representa n equações de segunda ordem, como:

$$M_r \ddot{q}_r + C_r \dot{q}_r + K_r q_r = F_r \tag{8}$$

Na teoria da análise modal, a hipótese de amortecimento proporcional permite modos de vibrar e frequências naturais idênticos aos do modo não amortecido que podem ser chamados de modos de vibrar clássicos (reais). Caughey (1960) mostra que uma condição necessária e suficiente para que um sistema dinâmico amortecido possua modos de vibrar clássicos é que sua matriz de amortecimento deve ser diagonalizada por uma transformação que desacople o sistema não-amortecido. De acordo com Caughey (1965), um sistema dinâmico linear amortecido proporcionalmente, que pode ser representado por um modelo com n graus de liberdade, possui modos de vibrar e as várias partes deste sistema vibram em fase. Para Caughey, o amortecimento proporcional pode ser relacionado com as matrizes de massa e rigidez através de

$$[c] = [m] \sum_{i=0}^{n-1} a_i \left([m]^{-1} [k] \right)^i \text{ na qual } a_i \text{ são constantes a ser determinadas.}$$
(9)

Deve-se notar que Rayleigh (1845) provou que, caso a matriz de amortecimento seja uma combinação linear da matriz de massa e rigidez, o sistema amortecido terá modos de vibrar clássicos. Na equação (9) quando i = 0 e i = 1 tem-se um caso especial que corresponde ao amortecimento de Rayleigh:

$$[c] = a_0[m] + a_1[k] \tag{10}$$

Em sistemas que possuem amortecimento viscoso qualquer, esta propriedade geralmente é violada e os modos de vibrar clássicos não existem. No caso em que a equação (7) não puder ser desacoplada, o amortecimento será chamado amortecimento não-proporcional e uma forma de tratamento matemático adequado utiliza a abordagem através de modelos no espaço de estado. Segundo Caughey (1965), nos casos de amortecimento proporcional, a igualdade $[c][m]^{-1}[k] = [k][m]^{-1}[c]$ é satisfeita.

2. MODELOS SIMULADOS

Para realizar a análise modal teórica, não há necessidade da excitação externa; faz-se então o vetor de forças nulo. Há uma variação nos valores das frequências naturais calculadas pelas expressões do sistema proporcional, na medida em que se varia o amortecimento. Os estudos feitos a seguir mostram que, quanto maior a magnitude do amortecimento maior a magnitude da frequência natural calculada e maior o erro entre este valor e o valor da frequência natural calculada para o sistema com amortecimento proporcional. As raízes da equação característica podem ser representadas por:

$$\lambda = -a \pm ib, \text{ tal que para } [c] \text{ proporcional} \tag{11}$$

$$a = \zeta \omega_n \tag{12}$$

$$b = \omega_n \sqrt{1 - \varsigma^2} \tag{13}$$

Entretanto, mesmo se [c] é não-proporcional, estas mesmas expressões são usadas. É necessário ressaltar que: $a \neq \zeta \omega_n$ e $b \neq \omega_n \sqrt{1-\zeta^2}$, embora (12) e (13) sejam usados de forma aproximada. Para casos onde a matriz de amortecimento é não proporcional, frequentemente faz-se: $a = \zeta \tilde{\omega}_n$ e $b = \tilde{\omega}_n \sqrt{1-\zeta^2}$ (14)

Assim, a frequência natural estimada ($\tilde{\omega}_n$) é o valor aproximado da frequência natural do sistema calculado através de hipótese de sistema amortecido proporcionalmente e fator de amortecimento modal estimado ($\tilde{\zeta}$) é o valor do fator de amortecimento modal calculado através de hipótese de sistema amortecido proporcionalmente. Foram investigados dois casos referentes ao modelo da Fig. (1): Caso1 e Caso 2 com variação do valor do amortecedor c_4 .

Figura 1. Sistema massa-mola-amortecedor com 4GDL

2.1. Simulação numérica do sist. dinâmico de 4GDL com variação do elemento c4 da matriz de amortecimento

O modelo de sistema dinâmico estudado possui 4 graus de liberdade, como representado por um modelo discretizado na Fig. (1) e será usado para os dois casos deste artigo.

2.1.1. Caso 1

Tabela 1. Dados utilizados para a simulação numérica do Caso 1.

m_j (kg)	<i>c_j</i> N/(m/s)	k_j (N/m)
$m_1 1$	$c_1 1$	$k_1 = 10$ $k_2 = 10$
$m_2 = 1$ $m_3 = 1$	$c_2 1$ $c_3 1$	$k_2 = 10$ $k_3 = 10$
m_4 1	$c_4 01,5$	$k_4 = 10$
	$\begin{array}{ccc} c_5 & 1 \\ c_6 & 1 \end{array}$	<i>k</i> ₅ 10
	$c_7 3$	
	$c_8 = 1$	

A Figura (2) exibe a variação de $\tilde{\omega}_n$ obtida para a primeira frequência natural, observando-se os valores de massa, amortecimento e rigidez apresentados na Tab. (1) para o c_4 variando de 0,0 a 1,5 com incremento de 0,01.

Figura 2. Magnitude da primeira frequência natural estimada $(\tilde{\omega}_{n1}^{1.5})$ em função da variação de c_4 .

A Figura (5) exibe a variação de $\tilde{\omega}_n$ obtidas para a segunda frequência natural. Observa-se que os valores de $\tilde{\omega}_n$ variam significativamente com a variação de c_4 enquanto o valor de ω_n permanece constante.

Figura 5. Magnitude da segunda frequência natural estimada ($\tilde{\omega}_{n2}$) em função da variação de c_4 .

Figura 7. Parte imaginária do segundo autovalor

A Figura (8) exibe a variação de $\tilde{\omega}_n$ obtidas para a terceira frequência natural.

Figura 8. Magnitude da terceira frequência natural estimada ($\tilde{\omega}_{n3}$) em função da variação de c_4 .

Figura 9. Parte real do terceiro autovalor

Figura 10. Parte imaginária do terceiro autovalor

A Figura (11) exibe a variação de $\tilde{\omega}_n$ obtida para a quarta frequência natural.

Figura 11. Magnitude da quarta frequência natural estimada ($\tilde{\omega}_{n4}$) em função da variação de c_4 .

Figura 12. Parte real do quarto autovalor

As Figuras (2), (5), (8) e (11) ilustram as diferenças obtidas entre as frequências naturais reais e as estimadas da variação do c_4 . As Fig. (14 e 15) trazem os quatro fatores de amortecimento, para ilustrar que todos ficaram abaixo de 1, o que significa que procurou se trabalhar com sistemas de amortecimento abaixo do crítico.

Figura 14. Estimativas do primeiro e segundo fatores de amortecimento modais

Figura 15. Estimativas do terceiro e quarto fatores de amortecimento modais

A seguir, a Fig. (16) apresenta os erros obtidos na estimativa das frequências naturais.

Figura 16. Erros na estimativa das quatro frequências naturais

Como pode ser percebido por meio da Fig. (16), o maior erro encontrado foi na estimativa da terceira frequência natural que passou dos 7%. É impotante observar que os fatores de amortecimento 1, 2 e 3 são mais altos que o 4, o que implica nas diferenças maiores na estimativa dessas frequências naturais.

m_j (kg)	c_j N/(m/s)	<i>k</i> _j (N/m)
m ₁ 1	c ₁ 1	k ₁ 10
m ₂ 1	c ₂ 2	k ₂ 10
m ₃ 1	c ₃ 1	k ₃ 10
m ₄ 1	<i>c</i> ₄ 2	k ₄ 10
	c ₅ 1	k ₅ 10
	c ₆ 1	
	c ₇ 02	
	c ₈ 1	

A Figura (17) exibe a variação de $\tilde{\omega}_n$ obtida para a primeira frequência natural, observando-se os valores de massa, amortecimento e rigidez apresentados na Tab. (2), para o c_7 variando de 0,0 a 2,0 com incremento de 0,01. Observa-se que os valores de $\tilde{\omega}_n$ variam significativamente com a variação de c_7 enquanto o valor de ω_n permanece constante.

Figura 17. Magnitude da primeira frequência natural ($\tilde{\omega}_{n1}$) estimada em função da variação de c_7 .

Figura 18. Parte real do primeiro autovalor

A Figura (20) exibe a variação de $\tilde{\omega}_n$ obtida para a segunda frequência natural.

Figura 20. Segunda frequência natural ($\tilde{\omega}_{n2}$) estimada em função da variação de c_7 .

Figura 22. Parte imaginária do segundo autovalor

A Figura (23) exibe a variação de $\tilde{\omega}_n$ obtida para a terceira frequência natural.

Figura 23. Terceira frequência natural $(\tilde{\omega}_{n3})$ estimada em função da variação de c_7 .

Figura 25. Parte imaginária do terceiro autovalor

A Figura (26) exibe a variação de $\tilde{\omega}_n$ e ω_n obtidas para a quarta frequência natural. Observa-se que os valores de $\tilde{\omega}_n$ variam significativamente com a variação de c_7 enquanto o valor de ω_n permanece constante.

Figura 26. Terceira frequência natural ($\tilde{\omega}_{n4}$) estimada em função da variação de c_7 .

Figura 28. Parte imaginária do quarto autovalor

As Figuras (29) e (30) ilustram que os fatores de amortecimento foram mantidos abaixo de 1,0.

Figura 30. Estimativas do terceiro e quarto fatores de amortecimento modais

A Figuras (31) e (32) trazem os erros na estimativa das quatro frequências naturais.

Figura 31. Erros na estimativa das duas primeiras frequências naturais

Figura 32. Erros na estimativa das duas últimas frequências naturais

Pode-se perceber por meio da Fig. (31) e (32) que o maior erro na estimativa foi encontrado para a segunda frequência natural e foi da ordem de 15%. Neste segundo caso, os maiores fatores de amortecimento encontrados foram o segundo, terceiro e quarto e os maiores erros nas estimativas foram das primeira, segunda e terceira frequências naturais.

3. CONCLUSÃO

Para os dois casos apresentados, os cálculos das frequências naturais e dos amortecimentos modais foram feitos admitindo-se a validade das relações entre estes parâmetros e os autovalores do problema como são bem conhecidos no caso do amortecimento proporcional. Observou-se que para o caso de amortecimento não-proporcional, este procedimento pode levar a erros significativos na avaliação destes parâmetros. Nos problemas simulados é possível quantificar os erros nas avaliações das frequências naturais, sendo significativos para fatores de amortecimentos altos. Observou-se que para os fatores de amortecimento não é possível quantificar estes erros, sendo que seus valores são apenas aproximações baseadas na teoria de amortecimento proporcional. Os resultados alcançados permitem concluir que existe a necessidade de se realizar pesquisas mais aprofundadas para desenvolver expressões que possibilitem a obtenção das frequências naturais não amortecidas e das formas dos modos clássicos em sistemas com amortecimento não proporcional, já que a precisão das expressões aproximadas utilizadas atualmente está aquém das necessidades atuais.

4. REFERÊNCIAS

BRANDON, J. A. (1984). A discussion of alternative Duncan formulations of the eigenproblem for the Solution of nonclassically, viscously damped linear systems. Journal of Applied Mechanics, v. 51, n°4, p. 904-906.

CAUGHEY, T. K. (1960). Classical Normal Modes in Damped Linear Dynamic Systems. Journal of Applied Mechanics. v. 82, p. 269-271.

CAUGHEY, T. K.; O'KELLY, M. E. J. (1965). Classical Normal Modes in Damped Linear

CLOUGH, R. W., MOJTAHEDI, S. (1976), Earthquake response analysis considering nonproportional damping, Earthquake Engineering and Structural Dynamics, 4, pp. 489–496.

LALLEMENT, G.; INMAN, D. J. (1995). A tutorial on complex eigenvalues.. Proceedings of the 13th International Modal Analysis Conference. p. 490.

MUCHERONI, M.F. (2006) Vibrações Mecânicas: notas de aula, USP.

SONDIPON A.; WOODHOUSE, J. (2001). Identification of Damping: Part 1, Viscous Damping.. Journal of Sound and Vibration. v. 243, p. 43-61.

SONDIPON A.; WOODHOUSE, J. (2001). Identification of Damping: Part 2, Viscous Damping.. Journal of Sound and Vibration. v. 243, p. 63-88.

STAREK, L.; INMAN, D. J. (2004). Design of nonproportional damped systems via symmetric positive inverse problems. Journal of Vibration and Acoustics, v. 126, p. 212-219, April.