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Abstract. The demand for electric energy has increased dramatically in the last years while the environmental effects and
the use of clean energies are a reality that must be taken into account in the buildup of the energetic matrix of a country.
As a consequence, the need for reliable and efficient means for generating electricity has brought up the necessity of
developing optimization methods in the design of many machines, including wind turbines. This paper presents the
preliminary results of the work leading to a future genetic algorithm optimization of the cross section of wind turbine
blades aiming at the maximum power coefficient (C'P). Thus the objective of the the optimization is the minimization of
the drag/lift ratio of a blade section. The PARSEC methodology was used to obtain a feasible geometry for the solution of
the aerodynamic problem with only a few parameters. The panel method with a correction for viscosity effects is used for
the solution of the flow field around the blade section. The results will allow for the choice of an approximate optimum
geometry for the solution of a more complex CFD model in the future.
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1. INTRODUCTION

During recent years it has been observed an increase in the demand for electrical power. Thus, a more efficient
generation of power is to be assessed in order to optimize the operation of horizontal axis wind turbines (HAWT) and
increase the extraction of energy from the wind. With this aim, this work was proposed as a preliminary study of the
running conditions of rotor blade geometry from an aerodynamic standpoint. For such, this article presents a simple
study of the blade element theory used for determining the blade geometry taking into account phenomenon such as
wake rotation. For attaining the drag to lift ratio, a simple vortex panel method is used to determine the lift coefficient.
Thwaitet's and Headt's methods are used in order to determine skin friction coefficients for the airfoils. The total drag
coefficient is calculated based in skin friction drag and form drag. The optimization procedure that will be implemented
uses a parameterization scheme called PARSEC for obtaining 2D airfoil geometries based on useful geometric features
such as leading edge radius and trailing edge cusp angle. This scheme makes it possible for the genetic algorithm code
to choose geometry parameters that are more likely to give the maximum power coefficient (C'P) for the respective blade
element

2. AERODYNAMICS OF WIND TURBINES
2.1 Momentum Theory

A wind turbine rotor consists of airfoils that generate lift through the pressure difference across the airfoil. In momen-
tum theory, the flow field around a wind turbine rotor, represented by an actuator disc, is determined using the conservation
of linear and angular momentum. This flow field is characterized by axial and angular induction factors that are a function
of the rotor power extraction and thrust. According to Manwell et al. (2002), the geometry of the rotor and the lift and drag
characteristics of the rotor airfoils can then be used to determine either the rotor shape, if certain performance parameters
are known, or rotor performance, if the blade shape has already been defined. The axial and angular induction factors are
defined as:
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where U; is the free stream velocity, U2 is the velocity at the rotor disc, w is the angular velocity imparted to the flow
stream and {2 is the velocity of the wind turbine rotor (see Fig. 1).
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Figure 1. Geometry of rotor analysis; U, velocity of undisturbed air; a, induction factor; r, radius.

The forces on a wind turbine blade can be derived considering the conservation of momentum. Considering the
annular control volume shown in Fig. 1, the axial and angular induction factors are assumed to be functions of the radius
r. From the conservation of linear momentum of the control volume of radius r and thickness dr the equation of the
differential contribution to the thrust is:

dT = pU?4a (1 — a) wrdr 3)

Similarly from the conservation of angular momentum, the differential torque (), imparted to the blades (equally and
oppositely to the air) is:

dQ = 4d’ (1 — a) pUnr*Qdr “)
2.2 Blade Element Theory

The forces on the blades of a wind turbine can also be expressed as a function of lift and drag coefficients and the
angle of attack. As shown in Fig. 2, the blade is assumed to be divided into NV elements. Furthermore, it is assumed that
there is no aerodynamic interaction between the elements and that the forces on the blades are determined solely by the
lift and drag characteristics of the airfoil shape of the blades.

Figure 2. Schematic of blade elements: ¢, airfoil chord length; dr, radial length of element; R, rotor radius; €2, angular
velocity of rotor.

The lift and drag forces of a blade section are perpendicular and parallel, respectively, to an effective, or relative wind.
The relative wind is the sum of the wind velocity at the rotor, U (1 — a), and the wind velocity due to rotation of the blade.
This rotational component is the vector sum of the blade section velocity, €2, and the induced angular velocity at the
blades from conservation of angular momentum, wr /2, or

Qr+ (w/2)r=Qr +Qad'r =Qr(1+ad’) (5)



The the relationships of the various forces, angles and velocities at the blade, looking down from the blade tip, is
shown in Fig. 3. Here, dF7, is the incremental lift force, dFp is the incremental drag force, dFy is the incremental force
normal to the plane of rotation (contributing to thrust), and dF7 is the incremental force tangential to the circle swept by
the rotor (force creating useful torque).
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U(1-a) = Wind velocity at blades
Urel = Relative wind velocity
& = Section pitch angle

= Angle of attack

@= 6 + a= Angle of relative wind

&,0=Blade pitch angle

&r=Section twist angle

Figure 3. Blade geometry for analysis of a HAWT.

The blade twist angle, 67, is defined relative to the blade tip. Therefore

O =0p —0Opo (6)

The twist angle is a function of the blade geometry, whereas p changes if the position of the blade, 8y, o, is changed.
Also, the angle of relative wind is the sum of the section pitch angle and the angle of attack:

p=0p+a (7
From Fig. 3, one can determine the following relationships:
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where \,. is the local speed ratio or the ratio of rotor speed at some intermediate radius to the wind speed A\, = Qr/U.
Also:

Uetr = Ul —a)/sing 9)
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dF;, = Cl5 pUZ cdr (10)
1

dF; = Cdiprelcdr (11)

dFy = dFpcosp+ dFpsing (12)

dFr = dFpsing —dFpcosy (13)

If the rotor has B blades, the total normal force on the section at a distance r from the center is given by
1
dFyN = Biprel (Cy cos p + Cysin @) cdr (14)

The differential torque due to the tangential force operating at a distance r from the center is given by

dQ =B -1 dFy (15)
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Note that the effect of drag is to decrease torque and hence power, but to increase thrust loading.
2.3 Generalized Rotor Design Procedure

The procedure for determining the rotor design for specific conditions begins with the choice of various rotor pa-
rameters and the choice of an airfoil. The final blade shape and performance are determined iteratively. The steps in
determining the blade design follow:

Determine basic rotor parameters

1. Begin deciding the power, P, and the wind speed, U. Include the effect of a probable C), and efficiencies 1 of various
components. The radius R of the rotor may be estimated from:

P = Cynl/2pTR*U? (17)

2. For electric power generation choose a tip speed ratio between 4 and 10. The higher speed machines use less material
in the blades and have smaller gearboxes, but require more sophisticated airfoils. Usually for A > 4 the number of blades
B must be 3.

3. Select an airfoil. If A > 3 a more aerodynamic shape must be used.
Define the blade shape

4. From the airfoil curves Cj gesign VS. a1, design aNd Cq design VS. O design chose the design aerodynamic conditions
such that Cy gesign/Cl.design 1S at a minimum for each blade section

5. Divide the blade into N elements (usually 10-20). Use the following relations to estimate the shape of the ith blade
with a midpoint of radius r;:
local tip speed ratio

local angle of relative wind

2
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element chord length

37r;
c; = Bg;i (1 —cos ;) (20)

element twist angle

Or,; =6p,i—0p,0 21
also:

wi = 0p i + Qdesign,i (22)
6. Using the optimum blade shape as a guide, select a blade shape that promises to be a good approximation. For ease of
fabrication, linear variations of chord, thickness and twist might be chosen.

Calculate rotor performance and modify blade design

7. As outlined above the calculation of the rotor performance follows an iterative procedure to find the axial and angular
induction factors. Initial guesses are needed and the values from an adjacent blade section or values from the previous
blade iteration may be used. From the starting optimum blade design:
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where o is the local solidity or the ratio of the element area by the swept area defined as 0 = Bc¢/2nr;. The angular
induction factor for the iz iteration is:
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Having guesses for a; 1 and ag)l, start the iterative solution procedure for the jth iteration. For the first iteration j = 1.
Calculate the angle of the relative wind:

U(l—aij) 1—aij
tang; ;i = J — :
an ; j Qr (1 + a;}j) (1 + a;’j) Ari (26)

Determine Cj ; ; and Cg;, ; from the airfoil lift and drag data using:
Qg =i, J —0pi 27
Calculate the local thrust coefficient

o; (]. — ai’j)2 (Cl,i,j Cos ;5 + Cd,i,j sin gom-)

Cr. ;= 28
Ty, Sin2g0i,j ( )
Update a and o’ for the next iteration. If Cr,, ; ; < 0.96:
1
A1 = inor (29)
{ + G'iCl‘i,jCOSVWz‘,j:|
If CT,«,i,j > 0.96:
a;; = 0143+ \/0.0203 — 0.6427(0.889 — C7,. i ;) (30)
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If the newest induction factors are within an acceptable tolerance of the previous guesses, then the other performance
parameters can be calculated. If not, then the procedure starts again at Equation 26.

8. Having solved the equations for the performance at each blade element, the power coefficient is determined using:

N
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The total wind turbine thrust and torque is obtained by summing the results of the blade elements along the radial
direction:

T = Z AT (33)

Q = ) AQ (34)

9. Modify the design if necessary and repeat steps 7-9 in order to find the best design for the rotor, given the limitations
of fabrication.



3. PANEL METHOD

An efficient way of determining the C; and Cy values required in the iterative solution of the previous section is
through the panel method. Many authors such as Anderson (1991) and Chow (1979) have implemented the potential
flow method for calculating pressure distributions around airfoil. The method presented by Anderson is based on the
discretization of the airfoil surface in panels over which singularities such as vortexes and sources are placed. The flow
pressures and velocities are calculated at the center of each panel (collocation point), where the contributions of the free
stream flow and of each panel around the airfoil are summed up. The vortex and source strengths are then calculated using
a linear system of equations in order to satisfy the boundary conditions. For the case studied here, the normal component
of the velocity on each panel is considered to be 0. For the lifting flow case, another boundary condition is considered at
the trailing edge where the tangential velocity at the panels on the upper and lower skins are made equal (one of the Kutta
condition requirements).

According to the method presented by Anderson (1991) the Kutta condition applied at the trailing edge of the airfoil
transforms the linear system of equations overdetermined. In order to solve this linear system, one of the equations
representing the flow boundary condition applied to the control point of one of the panels must be ignored. The choice of
what equation to ignore is difficult since it may introduce some arbitrariness in the numerical solution.

This problem is overcome in the methodology used by Houghton and Carpenter (2003) which mainly follows the
original approach given by Hess and Smith (1967). Here, all the panels carry a source of strength o; and a vortex of
strength . Since all the panels carry a vortex of equal strength the linear system of equations is easily solved adding
one more term to the skin boundary condition and one more equation to satisfy the Kutta condition at the trailing edge
making the system determined. Furthermore, the method used by Houghton and Carpenter (2003) for calculating angles
between each panel and the flow is more practical than that presented by Anderson (1991) and Chow (1979) since it uses
the vectorial dot product between the panel and the flow. This approach makes the calculations less prone to error once
the sign of the trigonometric operators does not need to be taken into account in the numerical routines.

Figure 4 shows the comparison of the C; vs. « curve for the NACA 23012 airfoil, which is commonly used for low
Reynolds numbers applications. The experimental curve is given by Abbot and Doenhoff (1959). As it is shown, there is
some correspondence of experimental and numerical values up to o« = 10°, but the curves are detached from each other
from o = 0° up to the maximum c. This is due to the lack of viscous effects on the numerical model. Figure 4 also shows
the pressure distribution on the upper and lower skins for av = 8°
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Figure 4. Comparison of C vs.« curves for NACA 23012 airfoil and airfoil pressure distribution.

In order to include viscous effects, some extra calculations must be made regarding laminar and turbulent boundary
layers and transition points. For laminar boundary layers, Thwaitet’s method is applied. In Thwaitet’s method a simple
single-order differential equation is integrated in order to provide the laminar boundary layer shape profile as a function
of the dimensionless pressure gradient parameter. For turbulent boundary layers, Headt's method is applied. This method
is rather empirical and is based in the study and fit of the profile of many turbulent boundary layers. In both methods the
skin friction coefficient cy is calculated.

According to Moran (1984), in the case of flow past an airfoil, the boundary layer starts out as laminar at the stagnation
point, with a finite thickness. Sooner or later, all boundary layers become unstable, and any small disturbance initiates
transition to the unsteady condition of turbulence. Transition starts at a particular value of the Reynolds number based on
the distance x from the start of the boundary layer, the Re,. For a boundary layer on a smooth plate, the critical value
of Re, is about 2.8 x 10°. In fact the value of the transition Reynolds number depends on many factors such as the



pressure gradient imposed on the boundary layer by the inviscid flow and surface roughness. Transition is hastened (Re;
is lowered) by both surface roughness and a positive value of dp/dx. For incompressible flows without heat transfer,
Moran (1984) applies Michelt's method. According to this method, for airfoil-type applications, transition should be
expected when:

22400

€x

Reg > 1.174 (1 + ) Re0-46 (35)

where Rey is the Reynolds number calculated with a characteristic length called momentum thickness which relates the
velocity inside the boundary layer with the free stream velocity. Finally the total drag coefficient is calculated with the
skin friction drag and the form drag obtained from the pressure distribution of the inviscid calculations.

4. AIRFOIL PARAMETERIZATION

In order to perform the optimization of the airfoil shape to be used in a HAWT, such that the C;;/C ratio is minimized,
a wide range of airfoil shapes, both known and unknown, must be analyzed. This can be done by means of a meta-model in
which the C;/C) values of many airfoils are stored in a database and the optimization routine carries out the investigation
of shapes present in the database in order to search the best airfoil for the proposed task. This methodology is presented by
Menezes and Donadon (2009) and, usually, shapes are defined according to NACA series 4 and 5 geometries Ladson ez al.
(1996). Another approach is to parameterize the airfoil geometry according to desirable aerodynamic features. According
to Mori et al. (2006) the changes implemented in the airfoil during a optimization procedure must be specified through
geometric parameters instead of coordinates. These parameters can be used to define changes to the camber or the upper
and lower skins of an airfoil profile.

In this paper, the methodology known as PARSEC by Sobieczky (1998) is implemented in order to apply changes
to desirable features of the airfoil profile. Here, the airfoil is divided into a symmetric part and a camber line which are
presented in the following polynomials:

t = a1z + asx + agz? + agx® + asx? (36)
Ye = bix+ box? + bsa® + bya® + bya® 37

In the above equations, all the coefficients are expressed in terms of 11 basic parameters: leading edge radius, upper
crest location, lower crest location and curvature, trailing edge coordinate at X = 1, thickness, direction and wedge angle.
Figure 5 shows the scheme for the eleven parameters and a comparison between the NACA 23012 actual and PARSEC
representations with an estimated error of 0.59%.
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Figure 5. NACA23012 representation and PARSEC parameters

5. GENETIC ALGORITHM OPTIMIZATION

To optimize the cross-section used in the analysis of section 2with the specific section wind profile, a genetic algorithm
optimization will be performed. The genetic algorithm is an heuristic method based on the biological concepts of natural
selection and genetics. According to de Weck and Willcox (2004), in such scheme, for each interaction, the amount of
changes termed as cross-overs, mutations and inheritance are set by the user and the choice of values to determine the
PARSEC parameters is done randomly. After the current population is determined each individual is assessed in terms of
the aerodynamic analysis of section 3. After that the more apt individuals are passed to the next generation of individual
along with the most relevant features (genes).



6. CONCLUSIONS

This paper presented the guideline and preliminary results of a research aimed at optimizing a horizontal axis wind
turbine from the aerodynamic standpoint. This optimization intends to enhance the power coefficient of a wind turbine
blade including a phenomenon known as wake rotation. Effects like wing tip losses are not taken into account. The
scheme to assess the blade power coefficient is termed blade element theory. In this theory, basic airfoil characteristics
such as lift and drag coefficients are needed. For that, a panel analysis taking into account viscous effects is carried out
for the varying conditions of each element. The airfoil section chosen for each blade element is then chosen by a genetic
algorithm optimization aimed at minimizing the Cy/C; ratio of the airfoil. Steps aimed at determining the drag coefficient
of a generic airfoil with low Reynolds numbers are currently being implemented and the genetic algorithm optimization
to obtain the best possible blade profile will be implemented further.
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