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Abstract: Nowadays, a major concern is the need to develop new energy sources. In this context, a sector that has 

attracted much interest is one in which devices that are able convert other types of energy into electrical energy. This 

technique is known as energy harvesting and consists of energy capture and storage by, for example, solar, wind, 

thermal and kinetic sources. Of interest in this paper are piezoelectric transducers, which are able to convert 

mechanical vibrations into electrical energy. However, when an electrical circuit is coupled to the transducer the 

mechanical system is strongly influenced by it. This paper presents a model that considers the coupling influence 

between these systems. This model is based on The Impedance Method to get the Transduction Matrix. The structure 

modeled as a free sliding beam with a piezoelectric ceramic coupled to it and one electrical load. A program was 

developed to analyze the behavior of this system, as well as the optimal conditions for energy harvesting. 
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1. INTRODUCTION  

 

The search for alternative sources of energy had been increasing. This has occurred for many reasons, among then 

the most important is the necessity to develop new sources of clean energy due environmental problems and the 

problem of exhaustible sources of energy due to growing demand. 

Power Harvesting or Energy Harvesting is about the act of converting energy for electrical energy before it is 

wasted or lost.  Normally, the electrical energy is stored in a battery to be used later. In this form, the Energy Harvesting 

may be a solution for charging batteries in many cases, mainly in remote applications where the connection with the 

electrical energy network is difficult. 

The type of energy to be converted can be solar, wind, thermal and kinetic.  In this paper the source is kinetic; 

specifically, vibration sources that can be anything that have periodic motion.  For example the small vibrations of a 

machine, the motion of walking, even the motion of blood circulation.  However, for this conversion to be possible the 

transducer should transform mechanical energy in electrical energy.  The transducers mostly used for this are magnetic, 

electrostatic and piezoelectric.  In this work, the harvesting of energy is through piezoelectric transducers, due to its 

ability to directly convert applied strain into electrical charge. 

In this context, many studies had been conducted they: Sodano et al. (2002) performed a study to investigate the 

amount of power generated through the vibration of a piezoelectric plate, as well as methods of power storage;  

Lesieutre et al. (2002) investigated the damping added to a structure due to the removal of electrical energy from the 

system during power harvesting;  Leffeuvre et al. (2005) constructed an electromechanical structure, trying to optimize 

the power flow of vibration-based piezoelectric energy-harvesters. 

This paper describes a model of the interaction between electrical and mechanical systems proposed by Nakano et 

al (2007) using a two-port network model of a transducer.  The methodology is applied to a piezobeam connected a 

resistive load and the behaviour of this system loads is studied.  The optimum conditions for maximum power harvested 

of the system is also was investigated. 
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2. TWO-PORT NETWORK MODEL 
 

To model the harvesting system a two-port network model of a transducer is used connected to the Thevenin 

equivalent for the vibrating structure and an electric load. This model was proposed by Nakano et al (2007) and can be 

seen in Fig. (1)   

 
Figure 1. Two-port network model  

 

In Fig. (1) �� is the blocked force, ��� is the Mechanical Impedance of the system, � is the velocity, � is the force 

on transducer, ��� is the Mechanical Impedance of the transducer, ��� is the Electrical Impedance of the transducer, ��	 

is the Impedance of the external load, 
 is the current, � is the voltage on load, ��� and ���  are the transduction 

coefficients.  ���  describes the force produced per unit electric current and similarly ��� represents the voltage 

generated per unit velocity. 

For the transducer the relationship between the mechanical and electrical variables is expressed by: 

 

 �� � =  �  ��� ������ ���   �  � �
  �                                                                                                                                     (1) 

 

where |���| = |���|                                                                                                                                                       (2) 

 

The voltage across the external load is given by: 

 � = −��	
                                                                                                                                                                   (3) 

 

Substituting Eq. (3) into the equation for voltage for the transducer given in Eq. (1) gives the current as function of 

velocity: 

 
 = − ���������� �                                                                                                                                                             (4) 

 

Substituting Eq. (4) into the equation for the force in Eq. (1) gives the force as a function of velocity: 

 � = ���� − �������������� �                                                                                                                                                (5) 

 

The force in the transducer can be expressed as: 

 � = �� − ����                                                                                                                                                            (6) 

 

Now, substituting Eq. (6) in (5) gives the expression for the velocity: 

 � =  !"��# $��$��%��&%�� '                                                                                                                                                         (7) 

 

where  �� = ��� + ���                                                                                                                                                    (8) 

 

Power harvested is considered as the power dissipated in the electric load. Under the harmonic excitation this power 

is: )* = +,  Re/−
�∗1                                                                                                                                                         (9) 

 

where ( * ) means the conjugate complex number 

From Eq. (3) and (4): 
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 )* = +,  Re/��	1 2 #���������� �2,

                                                                                                                                       (10) 

 

3. PIEZOELECTRIC TRANSDUCER  
 

The piezoelectric transducer model showed in this work was based is previous study of Preumont (2006) and 

Nakano et al (2007).  This model is used to find the mechanical and electrical impedances and transduction coefficients 

for this transducer. 

Figure (2) shows the piezoelectric transducers used in this work. In this figure 3  is Electric Field, � is Stress, 4�, 5� 

and 6� are length, width and thickness of transducer. 

 

 

 
Figure 2. Piezoelectric transducer  

 

A constitutive equation for a uniaxial piezoelectric transducer can be written as: 

 

 78 � =  �  9� :;+:;+ <=   �   3 �  �                                                                                                                                 (23) 

 

where 7 is Electric displacement, 8 is Strain, <=  is compliance of material under constant electric field, :;+ is 

piezoelectric constant, 9� is permittivity when the stress is constant. 

Assuming a harmonic force the constitutive equation can be transformed to: 

 

 �� � =  >  +?�� −@;+−@;+ +?��
  A   B��B��  �                                                                                                                         (24) 

 

where � is force, � is voltage, B��  is mechanical deflection and B�� is electrical charge, @;+ is the piezoelectric 

transducer constant, C��  is mechanical compliance with open electrodes (B�� = 0) and C�� is electric capacitance of the 

transducer for a fixed geometry (B�� = 0). Defining a coupling coefficient, E, by: 

 E =  |FGH|I�JK$                                                                                                                                                                  (25) 

 

The others parameters of Eq. (24) are given by:  

 +?�� =  LM+#NO                                                                                                                                                                 (26) 

 +?�� =  +? P+#NO Q                                                                                                                                                            (27) 

 @;+ =   FGH LM? P+#NO Q                                                                                                                                                           (28) 

 

where  C =  K$RS                                                                                                                                                                 (39) 

 

and  TU =  R�J S                                                                                                                                                                   (30) 

 

V = 4�5�  4 = 6� 
Polarization 

axis 
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In these equations C is the capacitance of the transducer with no external load (�� = 0), TU  is the stiffness of the 

transducer with short-circuited electrodes (�� = 0) and V is the cross section area.  

Finally, the mechanical and electrical impedances and the transduction coefficients are given, respectively, by: 

 ��� =  +WX ?�� P1 + Z[��Q                                                                                                                                          (31) 

 ��� =  +WX ?�� P1 + Z[��Q                                                                                                                                             (32) 

 ��� =  ��� =  \GHWX                                                                                                                                                      (33) 

 

where [ �� and [ �� are the loss factors in the mechanical and electrical compliances. 

 

4. MODEL OF FINITE PIEZOBEAM 

 

The system investigated in this work was a Euler-Bernoulli beam with a piezoelectric patch bonded on a surface. 

For a finite beam with a piezoelectric element bounded is necessary to find the uniform equivalent beam for applying 

this theory.  Fig. (3) shows the finite beam element and the cross-section before and after determines the equivalent 

beam. 

 

 
 

(a) (b) 

Figure 3. Piezobeam; (a) Finite element; (b) cross-section of beam and equivalent beam  

 

The equation of motion for a uniform Euler-Bernoulli beam is derived by Linear Theory of Elasticity and for 

flexural vibration motion due to a transverse distributed force per unit length, �]P^, 6Q, is given by Bishop and Johnson 

(1960). 

 3` abcP]Qa]b +  d8 aOcP],�Qa�O = �]P^, 6Q                                                                                                                            (34) 

 

where 3 is the Young’s modulus, ` is the second moment of area, d is the density of the material, 8 is cross-sectional 

area and e is displacement.  The solution for this equation in terms of trigonometric and hyperbolic functions is given 

by: eP^Q =  V sin i^ + j cos i^ +  C sinh i^ +  @ cosh i^                                                                                        (35) 

 

where V, j, C and @ are constants and i is the flexural wave number given by: 

 

i =  �d8 3`n �+ on  p+ ,n                                                                                                                                                (36) 

 

The mechanical Impedance of the beam depends of the boundary conditions and was determined using the 

methodology shown by Gardonio and Brennan (2004). The transfer impedance due a force excitation at ^q and a 

velocity response at Ŵ is given by the inverse of the mobility: 

 �qW = +rst                                                                                                                                                                     (37) 

 

and  uqW = Zp v  wxP]sQ wxy]tz {|S PXxO P+�W}Q#XOQ
~
��+                                                                                                                             (38) 

 

where ��P^Q is the �th natural mode, p� is the natural frequency for the �th natural mode, 4 is the length of the finite 

beam and [ is the loss factor for the material of beam. The natural modes ��P^Q can be obtained in many text books. 

Here we work with the approach developed by Gonçalves et al (2007). 
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5. NUMERICAL SIMULATION 

 

Figure (4) shows the beam of interest and the Tab. (1) the properties of the system and the piezoelectric material. 

The input of the system was represented in the figure above too and it was a blocked force with unitary amplitude.  The 

load connected was just a resistance representing a battery. 

 

 
Figure 4. Piezobeam free-sliding with harmonic excitation 

 

 

Table 1. Properties of the systems 

Descriptions Symbols Values 

Length of the beam and transducer 4 e 4�  0.1 [m] 

Width of the beam and transducer 5 e 5� 0.02 [m] 

Thickness of the transducer 6� 0.00026 [m] 

Thickness of the beam 6 0.002 

Piezoelectric constant of material :;+ -320 x10-12  [C/N] 

Young’s modulus of the transducer 1/<= 62 [GPa] 

Dielectric constant of the transducer 9� 3.36452x10-8 [F/m] 

Electrical loss factor of the transducer [ �� 0.003 

Mechanical loss factor of the transducer [ �� 0.000056 

Density of the transducer d� 7600 [m3/kg] 

Density of the beam d 2700 [Ns/m] 

Young’s modulus of the beam 3 70 [GPa] 

Mechanical loss factor of the beam [ 0.003 

 

The input force in the transducer is different than input of the system and was found by this equation: 

 

�� = � � = �O���O�                                                                                                                                                               (39) 

 

where B is the distance between the neutral axis and the upper surface of PZT and � = 3 3�n  . 

Figure (5) shows the first fourth modes of vibration for the beam.  The impedance of the beam was determined used 

the 200st first modes.  The voltage and power for different resistances values can be seen in Figs. (6) and (7), 

respectively. 

 
Figure 5. Modes Shape 
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Figure 6. Amount of voltage as a function of frequency and load (resistance) 

 

 
Figure 7. Amount of power as a function of frequency and load (resistance) 

 

Observing Fig. (7) we can note the optimum region for the power as a function of the resistance and frequency.  By 

examining this figure it can be seen that the frequency for the maximum power is the first natural frequency 

(9.947x103rad/s) disregarding the rigid body mode showed in the Fig. (5).  How we can note more power is generated 

for a resistance of 500Ω, the power in this case reached around 4.482mW. 

 

6. CONCLUSIONS 
 

A study describing an electro-mechanical model for an energy harvesting device with a piezoelectric element has 

been undertaken to determine the optimum load conditions.  When the load increase an open circuit rescuer the power 

becomes very small.  For the opposite, when the load tends to zero, simulating a short circuit, the voltage and the power 

is smallest, tends to zero too.  The optimization of the load for the system is extremity important to ensure efficiency of 

the harvesting system. 
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