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Resumo:  
Multifunctional structures can perform tasks additional to their primary functions and are pointed out as a future 
breakthrough technology for Unmanned Air Vehicles (UAV) design. Based on the concept of vibration-based energy 
harvesting, the lifting surfaces of a UAV can perform the additional function of providing electrical energy by 
converting aeroelastic vibrations to electricity using the direct piezoelectric effect. In this paper, the experimental and 
numerical investigation of a piezo-aero-elastic cantilevered plate-like wing with embedded piezoceramics are 
presented for energy harvesting. The piezo-aero-elastic model is obtained by combining na electromechanically 
coupled finite element model and an unsteady aerodynamic model. The electromechanically coupled finite element 
model is based on Kirchhoff assumptions to model the thin cantilevered wing with embedded piezoceramics layers. The 
substructure and the piezoceramic layers are assumed to be perfectly bonded to each other. A resistive load is 
considered in the electrical domain and the purpose is to estimate the power generated in the electrical domain due to 
the aeroelastic vibrations of the energy harvester wing. The aerodynamic model is accomplished with an unsteady 
doublet lattice model. The electromechanical and the aerodynamic models are combined to obtain the piezo-aero-
elastic equations which are solved using a modified P-K scheme. The experimental wing is a spring steel plate of 
constant thickness and the aerodynamic shape is given by 12 pieces of NACA 0012 airfoil plates made of foam. Two 
layers of piezoceramics are bonded into the top and on the bottom of the plate. Wind tunnel tests are performed and the 
evolution of damping and frequencies of each aeroelastic mode as well as the electrical outputs (voltage, current and 
electrical power) are obtained for different airflow speeds and a given load resistance. The experimental data is used 
to verify the piezo-aero-elastic model predictions.  
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1. INTRODUÇÃO 
 
Multifunctional structures are pointed out as a future breakthrough technology for the design of Micro Air Vehicles 

(MAVs) and Unmanned Air Vehicles (UAVs). A possible additional task to the primary load carrying function of 
aircraft structures is to provide an additional source of electrical energy by converting vibrations available in their 
environment to electricity through the concept of vibration-based energy harvesting. UAVs and MAVs constitute 
unique application systems where the possibility of an additional and localized energy source is very important. An 
additional energy source to run small electronic devices during the flight has the practical value of relieving auxiliary 
power sources of unmanned aircraft. A possible source of low-level energy for UAVs and MAVs is the mechanical 
vibration energy due to unsteady aerodynamic loads during the flight or due to ground excitation in perching. Although 
other transduction mechanisms exist, piezoelectric transduction has received the most attention for vibration-based 
energy harvesting (Sodano et al, 2004) due to large power density it provides. Piezoelectric power generators can 
harvest electrical energy from mechanical vibrations based on the direct piezoelectric effect. Researchers have proposed 
various models to represent the electromechanical behavior of piezoelectric energy harvesters over the last five years 
(Erturk  and Inman, 2009a). More recently, the analytical distributed parameter solutions for unimorph and bimorph 
piezoelectric energy harvester configurations with closed-form expressions have been presented (Erturk and Inman, 
2008;Erturk, and Inman, 2009b). An electromechanically coupled finite element (FE) formulation is another way of 
modeling the dynamics of piezoelectric energy harvesters. Recently an electromechanically coupled FE model (De 
Marqui Junior et al, 2009a) has been successfully verified against the analytical results obtained from the closed-form 
solution for a unimorph harvester under base excitation (Erturk and Inman, 2008) and also against the analytical and 
experimental results for a bimorph harvester with a tip mass under base excitation (Erturk and Inman, 2009c). The FE 
model has also been used to solve an optimization problem for UAV applications. The aluminum wing spar of a UAV is 
modified to design a generator wing spar. Since mass densities of typical piezoceramics are considerably large for UAV 
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applications, a limiting value for mass addition is imposed to the problem as a design constraint. Dimensions of the 
embedded piezoceramic are identified for the maximum electrical power output of the generator spar with embedded 
piezoceramics. 

 The piezoaeroelastic modeling of the concept of a piezoelectric generator wing with embedded piezoceramics 
(two identical layers, on the top and bottom surfaces, with the same width of the wing chord and covering 30% of the 
wing span, from the root to the tip) has also been presented (De Marqui Junior et al, 2009b) . The coupled model is 
obtained from the combination of the electromechanically coupled FE model (De Marqui Junior et al, 2009a) with an 
unsteady vortex lattice model. In solving the piezoaeroelastic equations of motion in time domain, a particular issue is 
addressed: the dependence between aerodynamic and electromechanical domains, i.e., to obtain the aerodynamic loads 
one must know the structural motion whereas to know the structural motion it is necessary to know the aerodynamic 
loads. The conversion of aeroelastic vibrations into electrical energy is investigated at several airflow speeds for a set of 
electrical load resistances. The aeroelastic behavior, and consequently the power generation, is dependent on 
aerodynamic damping which is modified with increasing airflow speed. At the flutter speed, the aerodynamic damping 
vanishes and the oscillations are persistent. Although this condition is avoided in a real aircraft, this is the best condition 
as a concept demonstration for the generator wing investigated here using the linear piezoaeroelastic model. The 
response history with the largest power output at the flutter speed shows a decaying behavior which is due to the shunt 
damping effect of power generation. The effect of segmented electrodes on the piezoaeroelastic response of the same 
generator wing and same set of load resistances has also been investigated (De Marqui Junior et al, 2009c). The 
electrodes are segmented on the center line (mid-chord position) and properly combined to the electrical load to avoid 
the cancelation of the potential electrical output of the torsion-dominated modes (which is strongly cancelled when 
continuous electrodes are used).  

As a consequence of the improved electromechanical coupling better power generation and shunt damping effects 
are obtained for the aeroelastic behavior since the piezoelectric reaction of the torsional modes in the coupled 
aeroelastic motions of flutter are taken into account with the segmented-electrode configuration. 

In this paper, frequency domain piezoaeroelastic analysis of a generator wing with two pairs of piezoceramics is 
presented for energy harvesting. The electromechanical finite element plate model is based on the Kirchhoff 
assumptions. A resistive load is considered in the external circuit. The subsonic unsteady aerodynamic model is 
accomplished with the doublet lattice method. The electromechanical and the aerodynamic models are combined to 
obtain the piezoaeroelastic equations, which are solved using a modified p-k scheme that accounts the 
electromechanical coupling. The evolution of the aerodynamic damping and frequencies is presented for each mode 
with increasing airflow speed under fixed load resistance. Usually, conductive electrode pairs cover the surfaces of the 
piezoceramic layers continuously. The electrical charge collected by the electrodes covering the surfaces of the 
piezoceramic layers is a function of the electric displacement in the piezoceramic during vibrations and the electric 
displacement is function of the dynamic strain distribution throughout the area of the wing. Therefore cancelation of 
electrical output occurs for modes of a cantilevered wing other than the fundamental bending mode when continuous 
electrodes are used. A consequence of the use of segmented electrodes (or sets of piezoceramics) is the improved 
electromechanical coupling and power generation since the piezoelectric reaction of torsional modes are taken into 
account at flutter. Two different combinations for the piezoceramics on the surface of the generator wing are used and 
the piezoaeroelastic evolution with increasing airflow speed is investigated. Piezoaeroelastic wind tunnel verifications 
are also presented in this paper. 

 
2.  PIEZOAEROELASTIC MODEL  

 
The piezoaeroelastic model is obtained by combining an electromechanically coupled FE model and an unsteady 

doublet-lattice aerodynamic model. The electromechanically coupled FE model is based on the Kirchhoff assumptions 
to model the thin cantilevered wing with embedded piezoceramic layers shown in Fig. 1.  

 

 
 

Figure 1 - Thin cantilevered wing with embedded piezoceramic layers and its cross-section. 
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The substructure and the piezoceramic layers are assumed to be perfectly bonded to each other. The piezoceramic 

layers (which are poled in the thickness direction) are covered by continuous electrodes (which are assumed to be 
perfectly conductive) with negligible thickness. A resistive load and a resistive-inductive circuit will be considered in 
the electrical domain. The purpose is to estimate the power generated in the electrical domain due to the aeroelastic 
vibrations of the energy harvester wing as well as the influence over electrical power generation on the aeroelastic 
behavior of the wing. A rectangular finite element with four nodes and three mechanical degrees of freedom per node is 
used to model the substructure. An electrical degree of freedom is added to the finite element to model the piezoceramic 
layers (13 degrees of freedom in total). A transformation is imposed in order to account for the presence of continuous 
and conductive electrodes bracketing each piezoceramic layer. This way a single electrical output is obtained from each 
piezoceramic layer. The reader is referred to De Marqui Junior et al.(2009a) for the detailed derivation and validation of 
the electromechanically coupled FE model against the analytical and the experimental results. 

The governing piezoaeroelastic equations for the generator wing (Fig. 1) are Eq. 1 and Eq. 2. 
 

pv+ + − =MΨ CΨ KΨ Θ F&& & %                                                                                                                                (1) 

0t
p p pC v v Y+ + =Θ Ψ% &&                                                                                                                                          (2) 

 
where M  is the global mass matrix, K  is the global stiffness matrix, C is the global damping matrix (assumed here 

as proportional to the mass and the stiffness matrices), Θ% is the effective  electromechanical coupling vector, pC is the 

effective capacitance of the piezoceramic, and Y is the admittance of the external circuit. It is known from the literature 
(Erturk et al, 2009c; Wang and Cross, 1999) that the electrode pairs covering each piezoceramic layer of a bimorph 
(Fig. 1) can be connected in series or in parallel to the external electrical load (for larger voltage or current). In general, 
the piezoceramic layers are poled in the same direction for parallel connection whereas they are poled in the opposite 
direction for series connection. For the parallel connection case, the effective electromechanical coupling vector is the 
sum of the individual contribution of each layer and the effective capacitance is the sum of each individual 
capacitances. For the series connection case, the effective electromechanical coupling vector is equal to that of one 
piezoceramic layer and the effective capacitance is one half of the capacitance of one piezoceramic layer. In the case 
studies presented here, the continuous electrodes covering the piezoceramic layers (poled in the opposite directions) are 
connected in series to an external circuit (cross-section in Fig. 1). The right-hand-side of the mechanical equation (Eq.1) 
is the vector of unsteady aerodynamic loads obtained from the unsteady doublet-lattice solution. 

  
2.1.  Unsteady Aerodynamic Model 

 
The Doublet-Lattice Method (DLM) is a well-known and usual method to determine the unsteady aerodynamics 

loads in aeroelastic problems. The DLM is a linearized formulation for the oscillatory, inviscid, subsonic lifting surface 
theory that relates the normal velocity at the surface of a body (e.g. an elastic wing) with the aerodynamic loads caused 
by the pressure distribution (E. Albano et al, 1970). The formulation was presented by Albano and Rodden (1970), and 
since then several authors (Blair, M, 1992; J.P. Giesing, et al, 1971; Rodden, W.P.,1994), has used the DLM for flutter 
investigations. 

The formulation of DLM is derived using the unsteady Euler equations of the surrounding fluid.  The assumption of 
small perturbations about a uniform stream is assumed in order to linearize the set of equations. The velocity field 
behavior is described by the aerodynamic potential equation (Eq.3). 

 

( )2
2 2

2 1
1 0xx yy zz xt tt

V
M

a a
φ φ φ φ φ   − + + − − =   

   
                                                                                           (3) 

 
Where M is the Mach number, V is the air flow velocity, φ  is the potential variable, a  is the speed of sound. The 

subscripts indicate differentiation with respect to the space and time variables.  
Three boundary conditions are defined for the problem: (1) on the trailing edge wake by inexistence of doublet 

along the wing plane, (2) the uniform flow is assumed at the far field (automatically satisfied by doublet singularities), 
(3) the normal velocity on the wing surface is given by the structural motion in presence of unsteady aerodynamic 
loads. By this, there is the Equation 4.  

 

h h
w V

h x

∂ ∂= +
∂ ∂

                                                                                                                                                        (4) 

 

Where,
 zw φ=  and h  is the normal position of medium plane of the wing. 

It is also necessary to describe the resultant differential pressure across the surface of a wing given the boundary 
condition of transverse velocity field (Blair, M , 1992). 
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In Equation 5 p  is the pressure. 

The relation between the aerodynamic potential and the pressure potential is found through the unsteady linearized 
Bernoulli equation (Eq.6). 

 

t xp Vφ φ= +                                                                                                                                                             (6) 

 
Using the analogy with the acoustic potential one can observe that the doublet singularity is a solution for 

aerodynamic potential equation. Similarly, the equivalent pressure doublet is an elementary solution for pressure 
equation. After some mathematical steps, the relation between the normal velocity along the wing and the pressure 
difference across the surface of wing is obtained as Equation 7.  
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Where ( ), ,p x y z∆  is the differential pressure, V is the free-stream velocity, oρ is the air density, ξ and η  are 

dummy variables of integration over the area S of the wing in x (chord-wise) and y (span-wise) direction, z is the 
transverse direction and K is the kernel function. The kernel function is a closed-form solution of the integro-differential 
equation based on the assumption of harmonic motion and it is given by 
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where 
2 21 Mβ = −  and ( ) ( )2 2 2R x y zξ η= − + − + ,ω  is the frequency of excitation, M is the Mach 

number and  � is a dummy variable.  
The DLM provides a numerical approximation for the solution of the kernel function. The wing is represented by a 

thin lifting surface divided into a number of elements (panels or boxes) with doublet singularities of constant strength in 
chord-wise and parabolic strength in span-wise direction. A line of doublets (distribution of acceleration potential) is 
assumed at the ¼ chord line of each panel, which is equivalent to a pressure jump across the surface. A control point is 
defined in the half span of each box at the ¾ chord line (the point where the boundary condition is verified). The 
strength of the oscillating potential placed the ¼ chord lines are the unknowns of the problem. 

The prescribed downwash (as the solution is assumed to be harmonic) introduced by the lifting lines is checked at 
each control point. The solution of the resulting matrix equation is 

 

( ), pM k
V

= ∆w
A C                                                                                                                                                (9) 

 
which gives the strength of the lifting line at each panel and consequently the pressure distribution across the 

surface. Here, A is the matrix of influence (which is related to the kernel function) between the normal velocity and the 

non-dimensional pressure distribution p∆C  and k b Vω= is the reduced frequency, b is the semichord. Integration 

over the area gives the local and consequently the total aerodynamic force coefficients. 
  
2.2.  Piezoaeroelastically Coupled Equations of Motion 
  

The aerodynamic loads can be included in the piezoaeroelastic equations as an aerodynamic matrix of influence 
coefficients. The aerodynamic loads and the structural motion are obtained from distinct numerical methods with 
distinct meshes. Therefore transformation matrices are determined using a surface infinite plate spline scheme in order 
to interpolate the forces obtained in the DLM mesh to the nodes of the FE mesh. The resulting transverse displacements 
and rotation in the chord direction at the structural mesh are also interpolated to the control points of the aerodynamic 
mesh. 

The aerodynamic force can be written in the modal domain. The boundary condition is added on the downwash by 
the input of structural mode shape obtained using the FE, 
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where q  is the dynamic pressure, saG  the transformation matrix (aerodynamic to structural mesh), wΦ  is the 

modal matrix and η  the modal coordinates. An influence aerodynamic matrix is created, 
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Since the unsteady aerodynamic solution is assumed to be harmonic, the piezoaeroelastic equations ((Eq. 1) and 

Eq.2)) in modal domain can be presented as, 
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where the over-bars represent modal matrices, j is the unit imaginary number and ω  the circular frequency. The 

admittance ( )Y ω  depends on the external circuit. The admittance expressions for the resistive and the resistive-

inductive (in series and in parallel) circuits are presented in Table 1. 
 

Table 1 – Admittances for different external circuits. 
 

External circuit Resistive Resistive-inductive 
(in series) 

Resistive-
inductive (in parallel) 

Admittance 

   
 
 
The conventional p-k scheme is one of the available ways to address the flutter equations for unsteady aerodynamic 

theories with the harmonic motion assumption. In this method, the evolution of the frequencies and damping is 
iteratively investigated for different airflow speeds (or reduced frequencies) solving the following eigenvalue problem 
for a conventional wing, 
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where 1 =h ηηηη  and 2 p=h ηηηη  , the superscripts R and I stand for the real and the imaginary parts of the 

aerodynamic matrix, p is the eigenvalue of the problem which gives the frequency (related to the imaginary part) and 
damping (related to the real part). However, Eqs. (12) and (13) differ from the conventional flutter equation due to the 
presence of piezoelectric layers and an external generator circuit (electromechanical coupling in the mechanical 
equation and the electrical equation, Eqs. (5) and (6)). Therefore the conventional p-k scheme is modified to solve the 
piezoaeroelastic problem for different electrical boundary conditions. For the first case (a resistive load) an augmented 
system is solved to examine the piezoaeroelastic behavior with increasing airflow speed and one specific load resistance 
using 

( ) ( ) ( )
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where 1 =h ηηηη  and 2 p=h ηηηη , and 3 ph v=  (the voltage output). The modified solution still gives the evolution of 

frequency and damping of the modes with increasing airflow speed as in the conventional p-k solution, but here the 
electromechanical coupling and the effect of a load resistance connected to the piezoceramic layer are considered. 
Although the main motivation here is electrical power generation, this formulation can be used to investigate the 
influence of the electrical domain (a resistive, resistive-inductive, or a more complex circuit) on the aeroelastic behavior 
of a generator wing.  

In addition the modified p-k scheme (which gives the neutral stability limit) the piezoaeroelastic behavior can be 
investigated in terms of piezoaeroelastically coupled FRFs. The FRFs are defined using the Eqs. (12) and (13) assuming 
an imposed base excitation condition in the piezoaeroelastic problem. Therefore, the forcing term in Eq. (1) is modified 
as 

 

       aero bF = F + F                                                                                                                                                   (16) 

 

where aeroF  is the unsteady aerodynamic loads determined using the doublet lattice method (aeroF qQ= ) and bF
is related to the base excitation. As discussed in the literature3, if the base is vibrating in the transverse direction (z-
direction), the effective force on the structure is due to the inertia of the structure in the same direction. Therefore, the 

forcing term bF  is represented as 

 

* babF = m                                                                                                                                                     (17) 

 
where *m  is the vector of effective mass per unit area obtained from the FE solution (including both the 

piezoceramic and/or the substructure layers) and ba  is the base acceleration. Assuming the harmonic motion of the 

cantilevered base of the generator wing (root) with the influence of the unsteady aerodynamics, the piezoaeroelastically 
coupled FRFs are defined by the matrix equation, 

 

_
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ω ω
ω ω ω
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Θ
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where FRFs is a  ( 1)x 1n + vector containing the n modal displacements per base acceleration (n is the number of 

modes considered in the solution)  for a desired airflow speed. The line ( 1)n +  gives the steady-state voltage FRF 

defined here as the voltage per base acceleration for a desired airflow speed. In addition to the voltage FRF, one might 
as well define the power FRF. Assuming a resistive or a resistive-inductive circuit in parallel connection one can obtain 

the electric current FRF by dividing the voltage FRF to the load resistance lR  of the energy harvesting circuit. The 

electrical power FRF is the product of voltage and current FRFs and it is defined as the ratio of electrical power output 
to the square of the base acceleration.  

When a simple resistive load is assumed, the variation of power output with load resistance at the short-circuit 
resonance frequency of a specific mode at a desired airflow speed can be investigated with the formulation presented 
here. This way the optimum load resistance for the maximum power or the maximum shunt damping can be determined 
for a desired airflow speed and vibration mode of interest. The typical aeroelastic behavior at this speed of neutral 
stability results in continuous power generation, i.e. the modes is coupled at the flutter frequency and self-sustained 
oscillations are obtained (zero aerodynamic damping). The optimum load resistance can be determined at the flutter 
speed (or at airflow speeds slightly smaller than the flutter speed) exciting the generator wing at the short circuit flutter 
frequency and investigating the power output. The optimum load resistance for maximum resistive shunt damping 
effect can also be determined by exciting the generator wing at the short circuit flutter frequency and investigating the 
relative tip motion. 
 
2.3. Theoretical Analysis 

  
This section presents numerical analysis of the piezoaeroelastic behavior of a cantilevered plate-like wing with four 

identical piezoceramics (QP10N, Midé Technology Corporation), two of them on the top and two on the bottom of the 
plate (Fig. 2). The piezoceramic patches on the same side (A1 and A2) are assumed poled in the same direction and 
opposed to the pair (B1 and B2) on the other side.  
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Figure 2. Power generator wing with piezoceramics (series connection). 
 
The four quick packs on the wing can be connected in different ways to improve energy harvesting from bending or 

torsion modes. Although a bending mode gets unstable in the present investigation there are significant torsion motions 
in the coupled flutter condition. The alternative considered in the case study of this work is to combine the resulting 
electrical outputs of the upper (A1 and A2) and lower (B1 and B2) piezoceramics in series. Parallel connection of A1 
and A2 (top of each one connected to one terminal of a load resistance) and parallel connection B1 and B2 (top of each 
one connected to one terminal of a load resistance).  To avoid cancellation of the electrical output of the torsional mode 
the parallel connection of A1 and A2 can be combined with the parallel connection of B1 and B2 as follows: the bottom 
electrode of A1, the top electrode of A2, the top electrode of B1 and the bottom electrode of B2 are connected. The top 
electrode of A1 and the bottom electrode of A2 are connected to one terminal of the electrical load whereas the bottom 
electrode of B1 and the top electrode of B2 are connected to its opposite terminal. To avoid cancelation of the electrical 
output of bending modes the parallel connection of A1 and A2 can be combined with the parallel connection of B1 and 
B2 as follows: the bottom electrode of A1, the bottom electrode of A2, the top electrode of B1 and the top electrode of 
B2 are connected. The bottom electrode of A1 and the bottom electrode of A2 are connected to one terminal of the 
electrical load whereas the top electrode of B1 and the top electrode of B2 are connected to its opposite terminal. In the 
discussion given here, it is assumed that the substructure material does not provide conductivity between the electrodes. 
In practice, an epoxy or a Kapton layer is employed for this purpose. In practice and in the simulations presented here 
both connections discussed here do not change the aeroelastic stability of the wing. 

The dimensions of the plate-like wing used in this work are 500 × 100 × 0.45 mm3. The geometric and the material 
properties of the wing (spring steel) are presented in Table 2. Note that the length - to - thickness ratio of the wing is 
large enough to neglect the shear deformation and the rotary inertia effects for the vibration modes of interest. The 
typical properties of PZT-5A piezoceramics are given in Table 3. 

 
Table 2. Geometric and material properties of the spring steel wing with piezoceramics 

 
Length of the wing (mm) 500 
Width of the wing (mm) 100 
Thickness of the wing (mm) 0.45 
Young’s modulus of the wing (GPa) 207.0 
Mass density of the substructure (kg/m3) 7800 
Proportional constant – α (rad/s) 0.1603 
Proportional constant – β (s/rad) 4.3084 x 10-4 

 
 

Table 3. Material and electromechanical properties of PZT-5A 
 

Mass density (kg/m3) 7800 
Permittivity  (nF/m) 

01800xε  

 (GPa) 
120.3 

 (GPa) 
75.2 

 (GPa) 
75.1 

11 22,E Ec c

12
Ec

13 23,E Ec c
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 (GPa) 
110.9 

 (GPa) 
22.7 

 (C/m2) 
-5.2 

 (C/m2) 
15.9 

 
The mode sequence and the undamped natural frequencies for the plate-like wing obtained from the FE model close 

to short-circuit conditions (very low external load resistance) are presented in Table 4. The first five modes are listed 
where B and T stand for the bending and the torsion modes, respectively. It is important to note that the span-wise 
elastic axis and the center of gravity are coincident at 50% of chord.   

 
Table 4. Natural frequencies and mode shapes 

 

Mode Mode shape [Hz] 
1 1B 1.60 
2 2B 10.06 
3 1T 16.70 
4 3B 27.90 
5 2T 50.71 

 
The aeroelastic evolution (damping) for the short-circuit and open-circuit electrical conditions are given in Fig. 3. 

Five modes are considered in the analysis. The short-circuit and open-circuit flutter speed are similar and determined as 
15.8 m/s with the first torsion mode unstable. One can observe a hump mode  at 15.8 m/s and the hard crossing occurs 
at 18.5 m/s. For this particular wing (reduced mass and damping) it is assumed that the flutter speed at the first crossing, 
the hump mode. A hump mode is a mode that becomes lightly undamped for a limited range of dynamic pressure and 
then becomes damped again, giving it the characteristic hump shape (Bartels, 2007). Therefore the flutter mode is 
strongly dominated by torsion motions. For the case investigated here, the flutter speed is not significantly modified 
since a simple load resistance is used in the electrical domain. 

 

 
 

Figure 3. Damping evolution with increasing airflow speed for short-circuit condition. 
  

2.4. Preliminary Experimental Results 
 

This section presents some preliminary experimental verifications for the piezoaeroelastic behavior of a 
cantilevered plate-like wing with four identical piezoceramics (QP10N, Midé Technology Corporation), two of them on 
the top and two on the bottom of the plate (Fig. 2). The piezoceramic patches on the same side (A1 and A2) are 
assumed poled in the same direction and opposed to the pair (B1 and B2) on the other side. 

The experimental natural frequencies are obtained from frequency response functions (Figure 4). For this FRF one 
piezoceramic is used as actuator and other one as a sensor. One can observe for this condition (no flow effect) that the 
electromechanically coupled FRF successfully predicts the frequencies. 
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Figure 4. Frequency response function for the uncoupled system 
 
 

Table 4. Natural frequencies and mode shapes 
 

Mode Mode shape scω
[Hz] expω

[Hz] 
1 1B 1.60 1.50 
2 2B 10.06 10.12 
3 1T 16.70 19.80 
4 3B 27.90 27.54 
5 2T 50.71 53.00 

 
 

The experimental tests were performed in a blower wind tunnel. The open test section dimension is 0.5 x 0.5m2 
and the maximum airflow speed is 20 m/s. The airflow speed is obtained with a simple Pitot tube associated with a 
micro manometer (TSI-8705). Temperature and atmospheric pressure corrections are also provided. A dSPACE DS 
1104 system is used for data acquisition. Four load resistances were tested during the experiments and the flutter 
boundaries are not significantly modified. At the airflow speed of 18 m/s a typical limit cycle oscillation behavior(Tang 
and EH Dowell, 2001) is observed. However the linear model cannot predict this nonlinear behavior. It is observed that 
torsion mode dominates the motions at this airflow speed. The main motivation here is to obtain the voltage output and 
power output shown in Figs. 5a and b. Voltage output increases with increasing load resistance.  

 

 
 

Figure 5. Voltage and power output for different load resistances at the experimental flutter speed (17.5 m/s). 
 

The optimum load resistance among the ones tested here for maximum power output is 510lR = Ω . The 

piezoceramics were also connected to avoid the cancellation of electrical output from bending modes. In this case the 
voltage and power outputs are strongly reduced (as the electrical outputs of the dominant torsional modes are 
cancelled). 
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2.5. Conclusion 

  
In this paper, an electromechanically coupled FE plate model based on the classical plate theory is presented for 

modeling thin piezoelectric generators investigated here. The FE model and an unsteady doublet-lattice method are 
combined to give the piezoaeroelastic equations, which are solved using a modified pk scheme that accounts the 
electromechanical coupling. The piezoaeroelastic response of a plate-like generator wing with four piezoceramics is 
investigated with increasing airflow speed for a set of electrical load resistance. The flutter speed is determined for the 
short-circuit condition. Since the flutter observed in this work is torsion dominated the piezoceramics are combined to 
avoid cancelation of the electrical output of torsion modes, The flutter boundaries are not significantly modified when 
the piezoceramics are combined to avoid cancelation of the electrical output of torsion modes when a set of load 
resistances are tested in the electrical domain. 

 Experimental wind tunnel verifications are also presented. The generator wing is tested in a blower wind tunnel. 
The piezoceramics are also combined to avoid cancelation of the electrical output from torsion modes. Limit cycle 
oscillation is observed at the airflow speed of 18 m/s. Such behavior cannot be predicted by the linear model presented 
in this work. The limit cycle behavior is not significantly modified for the set of load resistances considered in this 
work. However, an optimum load resistance (among the ones tested in this work) is obtained for maximum power 
output. Further experiments will be conducted for model validations. 
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