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Abstract. Internal bone remodeling models have been proposed in order to address behavior under everyday loading 
of hard tissues. Models, in general, are not general as to apply to all bones in human body. Also trauma cases are not 
covered by many of the models. Here, one such a model, Doblare's model of damage-repair is revisited, and modified 
in some aspects to address specific internal bone remodeling problems. In the model, elastic constitutive parameters 
are formulated in terms of the bone density and the fabric tensor, both dependent upon the amount of mechanical 
stimulus and the local present state of structure. Bone material is taken as inherently anisotropic. Density, instead of 
an intermediate tensor, configures the pseudo-damage variable, with a different undamaged state mapping. Strain 
energy equivalence is kept, however. Different elasto-damage surfaces are discussed in order to describe update of 
internal variables. Resorption and apposition are treated with similar, but different, surfaces. Evolution equations set 
the rate of change of density and constitutive components. Loading direction is directly related to the evolution of 
these components, as discussed here. Model is coded in a Fortran routine to use with Abaqus program. Comparison 
with some other available models is performed in some problems. Some experimental validation is also undertaken.  
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1. INTRODUCTION  
 

Process of generation of bone by means of use of a drawing force is known as osteogenesis by distraction. In the 
present case applied to a facial bone, the mandibula. The procedure was introduced by Codivilla in 1905. In the 
following 35 years, Ilizarov applied the technique to hundreds of patients, having lots of reports on the subject in the 
literature. However, these reports show little modeling of the process. Here an attempt in this direction is pursued.  

In synthesis the experimental program supposes mapping the structure of a human mandibula, from a skeleton, 
through x-rays. Constructed the 3D image, from several takes, it is assembled into a wire form in a computer program, 
where it is converted into a solid from mesh. It is on this model that loads will be applied, and simulated the response 
obtained from application of constitutive model presented ahead, and due to Doblare, but here included with some 
modifications.  

In order to gather the parameters required to generate results from the model, parameters present in it will have to 
be measured. Testing of the human mandibula will provide the input parameters for the model. Traditional techniques 
and equipment for this testing will be used, as available. For the parameters where measurements are not possible, 
literature values will be employed.  

In parallel to this procedure, a patient submitted to mandibular distraction will be accompanied, with variables of 
the procedure generated from experimental evidence, practice and estimations from the model. This will serve the 
purpose of verifying the adequacy of dead mandibula test parameters for the model. It will bring attention to some 
specifics of the process not brought into the model, and possibly construct a tool for automatic integration between 
practice and finite element estimation parameters as a guide to a better medical procedure.  

 
2. FORMULATION  

 
Since Wolf (Wolff, 1892) first observed the relationship between bone structure and applied loads, several models 

have been constructed to try to establish the behavior of bone, the evolution under mechanical stimulus. Many variables 
have been considered in the modeling. The apparent density of bone is a essential one. It is affected by bone porosity 
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and its anisotropy. Therefore construction of a constitutive model for bones, requires use of concepts considered in the 
description of porous materials, which are encompassed by the damage mechanics concepts. Though there is a 
continuous change of size, and orientation of porous inside the bone structure, with few cases of fracture, yet the 
equations of continuous damage mechanics CDM may be applied. In this case the treatment receives the name of 
continuum damage-repair theory. Here one such a description will be analyzed, modified in some aspects, and 
considered in the case of bone distraction 
 
2.1. Modified Doblare’s model 

 
Internal structure of bone tissue is similar to that of an elastic-porous material, with continuous evolution of 

constitutive elements. In it, stresses and strains are related by means of a linear relationship: 
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where )(~̂~ ΦCC = is the constitutive tensor, function of porosity ρ~ and fabric tensor being H~ , being HΦ ~d~2 = , 
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. Here ρ̂  is the full density of bone, β  and A material parameters, particular to each bone. The 

constitutive tensor C~  depends upon elastic moduli >< 321
~~~ EEE  and shear moduli >< 312312

~~~ GGG , all 

functions of porosity and direction.  Here reference coordinate natural axes are identified as >< 3,2,1 .  
Were the material supposed dense, therefore in an undamaged state, relationship between stresses and strains would 

be much simpler, as the coefficients in the constitutive equation would become constant. Therefore if a mapping into 
this state is considered, then: 

 
εCσ ~:~ =             (2) 

 
where:  
 

11 ..~ −−= ΦσΦσ           (3) 
 
are the stresses in the undamaged space and: 
 
 ΦεΦε ..~ =            (4) 

 
are the corresponding strains. HereΦ  is a diagonal tensor, in the principal natural system, representing the damage 

effects. It depends upon d~ and the fabric tensor H~  with components >< 321
~~~ HHH , such that 1~det =H . 

Tensor Φ  is also called the remodeling tensor (Doblare, 2002).  
The constitutive tensor C  should not, though, be isotropic, as the mapping should discount the porosities, but not 

the anisotropic character of the fabric itself. It only changes its distribution. The three elastic moduli as well as the three 
shear moduli should be constant, and obtained from the >ν< ˆ,Ê  by considering H~ (Cordebois and Sideroff, 1982). 
For first direction, it reads: 
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what differs from Doblare’s model. Other two directions follow likewise. 

Mapping, the most important point here, is constructed from the principle of equivalence of elastic strain energy in 
both domains, porous or damaged, and dense, or undamaged domain. In the present scenario it is termed the daily tissue 
stress level. Hence, if: 
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being )~(~̂~
e εψ=ψ  and ),(ˆe Φεψ=ψ : 
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Upon equating these expressions, the relationship between the constitutive tensors C  and C~  is drawn. The quantity 

),(~̂~ Φεψ=ψ identifies an amount of strain energy packed in each elementar volume of material, whose rate of change 
depends upon the level of strain, porosity and fabric directions, last two encompassed in the Φ  tensor. Rate of change 
of eψ  with respect to Φ  is termed the stimulus eψ∂= ΦY , : 
  
 )..).(..(: εΦΦεΦεΦCY +=          (11) 
  
 The stimulus Y  is a tensorial quantity, with principal values < >321 YYY , dependent upon the strains, the 

porosity and the fabric tensor. The stimulus may be separated into a hydrostatic hY plus a deviatoric Y′ part. The first 
relates to a volumetric effect whereas the second relates to a distortional effect of the load on the local fabric. Hence: 
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being I the unit second order tensor. Participation of each component, dependent on the character of the loading, static 
or alternate, and its resulting effect possibly affected by projection of the load onto the natural fabric system, may be 
measured by means of the tensor:  
 

YIJ ′ω+ω−= hY)21(                      (13)  
 
that includes parameter ω  to check out these factors.  

Present state of the bone structure under load stays fixed, until the amount of energy accumulated, after several 
load cycles gets to a level, where evolution of Φ  takes place. Locus, referent to bone formation, is set by function: 
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where, as proposed by Dobrare: 
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being *

tψ  the reference stimulus, w  the half-width of the dead-zone, where equilibrium prevails and no changes occur. 

Internal tensorial product is denoted by : symbol. Expression of coefficient fα is: 
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with n the number of loading cycles, ρ̂ a reference density, β  and B experimental coefficients. Fig. 1 shows a plot of 

this surface in a plane stress case, as affected by ωvalues. Fig 2 considers the different ratios 
2

1
H

H values. 
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 Evolution of Φ  takes place whenever 00,0 =∧≤≥µ fff gg &  (Koiter, 1953).  From the first 
condition:  
 
 ff RA =            (17) 
 
whereas from the second: 
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with the first increment as: 
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Admitting normality of Φ  to fg surface implies, additionally, that:: 
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However as HΦ ˆd= , having H~  an unitary determinant: 
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or, in considering Eq. (21): 
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 Introduction of these expressions into Eq. (18), will produce: 
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Once the increment in density ρ∆~ is computed, increments in the directional coefficients in the fabric tensor, Ĥ∆  are 
obtained from the increments computed in Eq. (21). Once defined the increment in density, the increment in the amount 
of surface remodeled r∆ follows from: 
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being vS the internal surface per unit volume, called specific surface (Martin, 1984) where bone is added, in completely 

mineralized form, maximum density ρ̂ . Fig. 3 shows this form of idealized behavior around the dead zone, equilibrium. 

Velocities in each regime are denoted by ac and fc . 
 

 
Fig. 1. Locus for apposition as a function of parameter ω . 

 
Fig. 2 Locus of apposition as a function of anisotropy ratio. 

 
 

Fig,.3 Rate of remodeling function versus stimulus in a simplified form  
 

2.2 Numerical Implementation 
 

Constitutive model developed above was coded in a Fortran routines to be used as an user routines inside finite 
element program Abaqus (Abaqus, 2005). The user material routine, UMAT, given the initial state at a point 
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>ρ∆< nnnn Hεεσ ~;~;;;  plus material data >ν< ˆ,Ê  computes the elastic energy corresponding to each load step, 

represented by an load amplitude affected by a time window. This loading itself is handled in a loading routine, 
ULOAD, where a given a sequence of load steps, associated to a specified load-program is prescribed. Summed energy 
corresponding to the number of cycles associated to the complete cycling is then considered in a failure routine, 
UFAILURE, using as input results coming from both routines above. It uses the locus of bone formation/apposition, 
where the new values of density and anisotropy are decided.  

. 
2.3. Some Characteristics 
 

Human mandibula has some special characteristics that have to be measure, as several of its mechanical properties 
are not published in the open literature. Presently the set of variables required to implement the model presented above 
are being measured.  They are summarized in Table 1.  

 
Table 1.  Listing of parameters required in the definition of apposition surface 

 
Parameter 

Reference stimulus *ψ  
Half-width size, w  
Exponent, m  
Percentage of active surface, κ  
Remodelling velocity, c  

A part these parameters, the set of anisotropy coefficients included in tensor H~ , in the beginning and end of the 
experiments have to be measured. The same is true about the elastic properties of the material, whose general 
dependence uses to be presented as (Jacobs, 1994): 

 
)(ˆ);(ˆ);(B̂B;BÊ ρν=νρβ=βρ=ρ= β        (27) 

 
where these functions have to be defined in the experimental program, possibly using numerical fitting.  
 
2.4 Discussion 
 

From what has been analyzed so forth, the most difficult parameter to gather has been the reference stimulus. It’s 
evolution with time and medical conditions of the patient vary. A part from this, lack of homogeneity of bone structure 
is important, and it possibly may also require different models for different regions of bones. In particular adequacy of 
the functions describing apposition and resorption locuses have to be analyzed.  

The character of the loading is also important. Is seems that static loads require the apposition locus to depend most 
on the hydrostatic part of the stimulus, whereas variable loads make it more dependent on the deviatoric part. Moreover, 
directionality of loading plays a factor on the evolution of bone, what would require a kinematic approach to deal with 
the evolution of the damage surfaces, thing not contemplated so forth. In such a case, besides formatting the evolution 
of the damage surfaces, loading would reposition of the center of the surfaces itself.  
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