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Abstract: This works deal with a stress distribution investigation in metallic sheets with strong stress concentrators. 
The numerical solution of boundary problems of the Theory of Elasticity was performed, through the Finite Element 
Method, in structures simulation software and follows the sequence: definition of material mechanical properties; 
creation of the finite element model, local constraints, external forces; simulation and post-analysis stress values.At 
second step, sheets with different ratio (length/width) were studied. The obtained results show that ratio greater than 3 
is necessary to neglect the effect of boundary conditions on stress diagram in net-section. At next step, were studied 
sheets with fixed size and different lengths of central crack under uniform remote tension. The results were compared 
with asymptotic solution of linear fracture mechanics, in order to verify the zone extension of strong stress 
concentration.Then were performed the numerical analysis of plastic zone extension based on Irvin-type approach. 
Considering as elastic-plastic ideal, the difference between load flow in the zone where elastic solution results in 
values higher than yield stress, and load flow for real elastic-plastic material, is redistributed to former elastic zone. 
Due to effective load increase, stress in elastic zone increases too, needing a correction of initial estimation of plastic 
zone size, through comparison of stress diagram for elastic material and the yield stress of material. The 
implementation of this approach to numerical FEM analysis of stress distribution requires special iterative algorithm, 
aimed at determination of effective coefficient of stress increase in elastic zone, due to presence of plastic strain at 
crack tip. The obtained results show strong effect of both crack length to sheet width ratio and remote tension stress to 
yield stress ratio on plastic zone extension. The possible analytical approximation of numerical results is discussed. 
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1. INTRODUCTION 
 
In a simplified mode, in aeronautical structures a significant portion of panels are basically subject to cyclical 

strength, from pressurization of the aircraft. Searching simulate these conditions in panels with cracks (Figure 1), in 
experimental studies of crack propagation are used standardized samples, under tension normal to the crack surface, for 
example, the plate with central crack (Figure 2). The information of stress distribution on whole future trajectory of 
crack becomes important for applying the concept of cumulative damage in order to improve simulation methods of 
crack propagation (Anderson, 1995, Lee, 2005). 

This study aims to investigate stress distribution in plates with strong stress concentrators (cracks), using the Finite 
Element Method, for solving the boundary problem of the linear theory of elasticity, as well as numerical methods of 
integration and iterative determination of zeros of real functions, to calculate auxiliary parameters. 

The first objective of numerical research was to determine proportions, between length and width of the plate, that 
make negligible the effect of boundary conditions on the stress distribution in cross section with a crack. Then, the 
diagram of stress distribution obtained by Finite Element Method was checked in respect the tension flow in the 
minimum section. Checking the validity of terms of global boundary conditions and other properties of obtained 
diagrams, was prepared an analytical approach to stress distribution in the minimum section, simple and accurate, which 
reached the second objective. 
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Figure 1: Aircraft panels subjected to mechanical stress and the presence of cracks 
 
However, the direct application of this approach in simulation of crack propagation process would be restricted to 

cases of very low loads, when the plastic flow of material near the crack tip is negligible. These cases do not present 
great practical use, so the third goal of this work is the systematic study of the extension of plastic zone in the nearby of 
the cracks, due to the relative level of loading and relative length of crack, based on numerical results of the Theory of 
Elasticity problems.  

 

 
 

Figure 2: Panel with central crack 
 

1.1. Theory of Elasticity and MEF 
 
Considering the conditions in thin plate under tension in the plan, i.e. plane stress, the boundary problem of the 

theory of linear elasticity includes a system of eight partial differential equations for components of stress, strain and 
displacement, with respectives boundary conditions, represented by movement restrictions and external loads. The 
analytical solution of this class of problems is possible only in cases of relatively simple geometry (Timoshenko, 1951). 
In particular, in the presence of strong stress concentrators, these solutions are obtained on the basis of asymptotic 
methods ("small parameter") and are limited to the immediate vicinity of the concentrator (Pastoukhov, 1995). 
Therefore, to study the stress distribution across the section of the plate with a crack, it is necessary to apply numerical 
methods. 

The main tool for numerical stress analysis, strain and displacement in elastic solid is the Finite Element Method 
(FEM) (Hartmann, 2007), widely used in development activities in mechanical design.  

 
1.2. Fracture Mechanics 

 
Approaching already the fundamentals of fracture mechanics, dealing with the stress distribution in bodies with 

cracks, the model is characterized by type of load, among the three primary factors, in search of stress intensity KI, KII, 
KIII dependents of external load, geometry of the body and the crack (Lee, 2005). 

Considering solicitation cases of type I (normal traction to the crack), the asymptotic solution for stress distribution 
near the crack tip, considering only the minimum cross-section, has the following form (Anderson, 1995; Pastoukhov, 
1995). 
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The stress intensity factor KI is represented as: 
 

 IK l Y      (2) 
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Where: 
σ0: remote uniform stress; 
l: crack length; 
b: plate width; 

l b  . 
 
In the case of symmetrical solids, as the plate with central crack, the parameter l corresponds to half of the crack 

(left or right), while the parameter b represents the full width of the plate. 
For dimensionless geometric function Y there various approaches in terms of  , obtained from discrete data, 

calculated numerically. In the case of central crack, we use the polynomial approximation: 
 

   2 31,77 0,454 2,04 21,6
Y

  




  
  (3) 

 
The parameter KI, whose critical value is determined experimentally considering the thickness effect, is used in 

integrity criterion of the mechanical parts with cracks under static load (Lee, 2005; Pastoukhov, 1995). 
The expression analysis shows that the stress tends to infinity when x distance of the cracks tends to zero. This 

means that metallic materials, whose mechanical behavior presents plastic flow when reach a critical stress level (elastic 
limit), there is a plastic zone surrounding the crack tip. The extent of this zone along the line of crack can be evaluated 
by equating the function on the right of equation (1) to the yield stress σe, resulting in: 
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The first approach is imprecise because, when stress in the plastic zone equals to the yield stress (considering ideal 

elastic-plastic mechanical behavior), the tension flow in this area is lower than that determined by the solution of linear 
elasticity. Thus, a large part of the traction force is redistributed to the elastic zone, increasing the tension in this zone, 
so the yield will be achieved at some point farther from the crack tip than Rp.  

Classical corrections of plastic zone extension, developed already half-century ago within in the same local 
approach, results in constant factor. For example, factor 2 obtained by Irwin (Irvin, 1957, 1960, Lee, 2005), or values 
close (Leonov-Panasyuk, 1959; Dugdale, 1960). These estimates can be used, due to safety factors, under certain 
conditions, when the main concern is the failure by generalized yield of cross section. However, the margins of 
applicability are subject to verification, whereas the degree of loading in relation to the yield stress strongly affects the 
redistribution of tension flow between the plastic and elastic zones. Another important parameter that should be 
considered is the geometric nature of crack (length) in relation to the plate width. 

For use in crack propagation models, the stress diagrams should be investigated in the whole section with a crack, 
between the crack tip and the edge of the plate, which includes equations development of the extent of plastic zone in 
the parameters cited, rectifying thus, the classical estimates. 

 
2. METHODOLOGY 

 
2.1. Numerical solution of boundary problems 

 
For the investigation of a problem through the finite element method, should be followed certain steps. First it’s 

created a geometric model to be analyzed according to the particularities of the "pre-solvers" of FEM codes used 
(NASTRAN, ANSYS, COSMOS ... - (Hartmann, 2007)). After that, the characteristics of mechanical behavior of the 
material are defined. Then, for each part of the solid, appropriate parameters of elements are chosen and the 
discretization is performed. Then are applied loads and movement restrictions on the nodes or regions suitable to a real 
problem. From this stage, it has formulated the problem completely, and resolved according to the characteristics of the 
FEM algorithm used ("solver"). The results of resolution will be available for post-analysis, in numerical and graphical 
form. 

 
The geometry, movement restrictions and loading for plates under traction normal to the surface of the central crack 

are shown in Figure 3. The research results will be executed initially on the basis of h/b and λ=l/b. 
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Figure 3: Schematic model of the plate with central crack under tension orthogonal to the crack 
 
For the material properties, was adopted the equivalent to the properties of aeronautical aluminum Al 2024-T3 (E: 

70GPa, ν: 0.3), and in the plate loading was applied reference tension σ0 = 100MPa, i.e. "100%". 
 

2.2. Computational model 
 
For plate models analysis, was used structural analysis software based on finite element method, which incorporates 

the pre and post-processor in a single environment, known as LISA, developed by LISA Finite Elements Technologies, 
Ontario, Canada. 

The conditions of mechanical solicitations and movement restrictions which the panel is subjected were created in a 
model of standard rectangular plate with homogeneous symmetric discretization. The creation of distributed load was 
done through the distribution of nodal loads, in order to obtain the same loading for each element, resulting in double 
amount of force to the nodes of the model, with respect to two nodes of each side of the plate width b (Figure 4). At the 
upper edge and in the nodes with loads, the movement was restricted to the orthogonal axes of force application, while 
the lower edge, the restriction was in all degrees of freedom. 

 

 
 

Figure 4: Nodal forces for the models of plates 
 
After creating the stress concentrator in the symmetry axis of the plate, it has created a symmetrical mesh around 

the crack tips, capable of further local refinement. Then, the model was subjected to routine “solver” for resolution of 
boundary problem of linear elasticity. With tension value at each node in mesh collinear to the axis of crack, starting 
from the side of the plate to the crack tip, can be made a study of results in stretch of sharp increase of tension, 
continuing the mesh refinement until convergence is achieved. 

 

 
 

Figure 5: Mesh refinement in the crack tips regions 
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At this stage, with an initial model determinate, began the study of proportions effect of the plate, h/b. Then, for a 

standard ratio, calculations were performed for various values of geometrical parameter λ=l/b, in the range of practical 
importance. 

 
2.3. Stress distribution analysis 

 
The results analysis, obtained for normal-tension diagram in cross section with a crack, was focused on the 

following issues: 
- Comparison with the asymptotic distribution according to equation (1), in order to determine the validity area of 

the same, in case of finite plate width; 
- Stress distribution away from the crack, near the side edges; 
- Transient behavior in the intermediate region; 
- Tension flow, represented by integration of normal stress diagram. 
Due to the symmetry of the problem and their results, these tests were performed only for one half of the plate 

(right). 
 

2.3.1. Tension flow study 
 
In integration process, was necessary to use the integrable singularity, due to the theoretical infinite values in crack 

tip, according to the asymptotic solution. 
In stress analysis, was obtained the closest point (xa) between the curves with a criterion of 5% difference between 

the values of two curves, which was observed very near the crack tip. Performing this, the curve was divides into two 
regions that have been integrated in different ways (Eq.5). 
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Due the good correspondence between numerical results and asymptotic solution (1), the first region (A1), starting 

at the crack tip and ending in xa, was integrated analytically based on equation (1) to stress distribution, depending on 
the factor stress-intensity:  
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In the second region, beginning in the closest point (xa) and ending in the lateral edge, due to the distance between 

the two curves the study of forces was made by numerical integration of the curve, represented by discrete numerical 
results. This integration was done following two known methods for approximate calculation of definite integral: 
Simpson 1/3, in stretches with an even number of equal steps, and the Trapezoidal Rule, in other stretches. Both 
methods have reliable estimates of error (Ruggiero, 1996). The stretches integrated by Simpson and Trapezoidal simple 
rules, have respectively the following forms: 
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2.4. Analytical approach of stress diagram 

 
Since the study of tension flow (as 2.3) confirmed the maintenance of overall equilibrium in terms of normal stress, 

the same condition was observed in development of an analytical approach to the diagram of normal tension in cross 
section of the crack. Other important observations were the aforementioned correlation between the numerical results 
with the asymptotic solution σassint (eq. 1) near the crack tip, and the tendency to value of remote tension σ0 near the side 
edges. In all studied cases, the stress diagram showed characteristic monotonic (with first derivative in relation to the x-
coordinate, negative), with drop ever lower farther from the crack (second derivative positive). 

Therefore, was adopted the following type of approach. First, it separates the areas of strongest trends: the 
asymptotic, near the crack, and the remote tension, out of this one. As a point of separation, is adopted the point Ra, 
where asymptotic value equals the remote tension, σassint(Ra)= σ0. Using equation (1): 
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In the stretch 0≤x≤Ra, is adopted the asymptotic correction in the form of a linear function of the same, with 

coefficients ranging from 0 at the crack tip and a maximum value c0 at the point x=Ra. 
In the stretch Ra ≤x≤b/2-l, remote tension σ0 is considered as a basis and the fix also follows a linear function of the 

asymptotic σassint(Ra). In this case, the coefficient ranges from 0 at the edge of plate (x=b/2-l) and a maximum value at 
the point x=Ra. Because of continuity of the diagram, and observing the condition σassint(Ra)= σ0, this maximum value is 
also equal to c0. 

Thus, the approach of stress diagram will be searched in the form: 
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Where c0 is a tuning parameter, determined from condition of global equilibrium: 
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The value of this parameter only depends on the geometrical parameter λ=l/b. 
 

2.5. Study of plastic zone extension 
 
The study of plastic zone extension, near the crack tip, was based on the analytical approach of the stress diagrams 

obtained from numerical solutions of the problem of linear elasticity (10). With the normal tension equal to the yield 
limit σe within the plastic zone (0≤x≤Rp), out of this area the redistribution of tension flow should be considered only in 
the asymptotic correction, since the trend to value in plate edge is not affected by local phenomena of crack area. 
Therefore, within the zone of stress concentration (Ra≤x≤Rp), the first part of equation (1) will increase proportionally 
(p=cte. factor), which reflects the increase in external effective load in this area, due to relief in the plastic zone. Thus, 
there will also increase tension at the point x =Ra, which implies a corrective term to the correction equation for stretch 
(Rp ≤x≤xa), which represents the asymptotic contribution. We will adopt this fix also in proportional form, with 
coefficient p1=cte, connected with p through the continuity condition at the point x =Ra. The approach of the stress 
diagram for elastic-plastic material takes the form:  
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The values of p and p1 factors are determined from global equilibrium condition, similar to equation (11), along 

with the continuity condition at the point x=Ra. The analytical integration results in an algebraic equation with no 
analytically tractable form, therefore, will be needed to perform a numerical iterative procedure for each combination of 
values of λ and s.  

 
3. RESULTS AND ANALYSIS 

 
3.1. Results of numerical solution of boundary problems 

 
In the effect study of plate proportions, it was found that the ratio h/b=3 is sufficient to disregard the effect of 

boundary conditions on the stress distribution in cross section with crack. 
The results for this nodal distribution, obtained by checking convergence as a function of the mesh refinement, for 

some values of geometrical parameter λ=l/b, are presented in Table 1, compared with values from the asymptotic 
solution of equation (1). 
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Table 1: Nodal values to geometric parameters 

 
λ=0,02  λ=0,05  λ=0,10  λ=0,15 

   σ σassint x Relative 
Error  

σ σassint x Relative 
Error  

σ σassint x Relative 
Error  

σ σassint x Relative 
Error 

1935,174 ∞ 0 ∞  1944,447 ∞ 0 ∞  1979,401 ∞ 0 ∞  3544,330 ∞ 0 ∞ 

1067,196 1100,538 1,6624E-05 -3,12%  1072,235 1107,879 1,662E-05 -3,32%  1091,492 1123,966 1,663E-05 -2,98%  1951,057 1999,075 1,662E-05 -2,46% 

783,623 778,734 3,3203E-05 0,62%  787,310 783,928 3,32E-05 0,43%  801,496 795,482 3,32E-05 0,75%  1429,821 1414,534 3,32E-05 1,07% 

636,882 636,028 4,9774E-05 0,13%  639,855 640,247 4,978E-05 -0,06%  651,375 649,639 4,978E-05 0,27%  1159,657 1155,316 4,977E-05 0,37% 

550,051 550,838 6,636E-05 -0,14%  552,657 554,528 6,636E-05 -0,34%  562,615 562,660 6,636E-05 -0,01%  999,458 1000,571 6,636E-05 -0,11% 

477,874 450,051 9,9411E-05 5,82%  480,137 453,061 9,941E-05 5,64%  488,780 459,710 9,941E-05 5,95%  865,769 817,496 9,941E-05 5,58% 

386,039 367,559 0,00014904 4,79%  387,859 370,011 0,000149 4,60%  394,848 375,446 0,00014904 4,91%  695,090 667,653 0,000149 3,95% 

332,263 318,356 0,00019867 4,19%  333,830 320,480 0,0001987 4,00%  339,848 325,187 0,00019867 4,31%  594,629 578,279 0,0001987 2,75% 

289,362 260,100 0,00029763 10,11%  290,728 261,835 0,0002976 9,94%  295,971 265,681 0,00029763 10,23%  513,605 472,459 0,0002976 8,01% 

236,483 212,422 0,00044623 10,17%  237,600 213,840 0,0004462 10,00%  241,890 216,983 0,00044622 10,30%  412,690 385,855 0,0004462 6,50% 

206,370 183,987 0,00059482 10,85%  207,345 185,214 0,0005948 10,67%  211,094 187,935 0,00059482 10,97%  354,343 334,203 0,0005948 5,68% 

183,198 150,318 0,00089111 17,95%  184,064 151,321 0,0008911 17,79%  187,397 153,544 0,00089111 18,06%  308,138 273,046 0,0008911 11,39% 

155,646 122,765 0,001336 21,13%  156,382 123,584 0,001336 20,97%  159,224 125,400 0,001336 21,24%  251,554 222,997 0,001336 11,35% 

140,631 106,331 0,00178088 24,39%  141,297 107,040 0,0017809 24,24%  143,875 108,613 0,00178089 24,51%  219,440 193,146 0,0017809 11,98% 

129,784 86,873 0,002668 33,06%  130,399 87,453 0,002668 32,93%  132,783 88,737 0,002668 33,17%  194,713 157,801 0,002668 18,96% 

117,710 70,949 0,004 39,73%  118,269 71,423 0,004 39,61%  120,453 72,472 0,004 39,83%  165,160 128,876 0,004 21,97% 

111,794 61,429 0,005336 45,05%  112,326 61,838 0,005336 44,95%  114,412 62,747 0,005336 45,16%  149,306 111,582 0,005336 25,27% 

108,531 54,952 0,006668 49,37%  109,050 55,318 0,006668 49,27%  111,069 56,131 0,006668 49,46%  139,736 99,817 0,006668 28,57% 

106,505 50,169 0,008 52,90%  107,017 50,503 0,008 52,81%  108,962 51,245 0,008 52,97%  133,298 91,129 0,008 31,63% 

100,140 15,013 0,089336 85,01%  101,118 26,373 0,029336 73,92%  107,481 47,437 0,009336 55,86%  111,327 55,802 0,021336 49,88% 

100,132 14,902 0,090668 85,12%  100,992 25,794 0,030668 74,46%  106,333 44,377 0,010668 58,27%  109,910 54,137 0,022668 50,74% 

100,124 14,794 0,092 85,22%  100,851 25,252 0,032 74,96%  105,302 41,842 0,012 60,27%  108,325 52,613 0,024 51,43% 

100,115 14,688 0,093336 85,33%  100,686 24,741 0,033336 75,43%  104,216 39,691 0,013336 61,92%  106,489 51,208 0,025336 51,91% 

100,105 14,584 0,094668 85,43%  100,493 24,261 0,034668 75,86%  102,900 37,845 0,014668 63,22%  104,330 49,912 0,026668 52,16% 

100,093 14,482 0,096 85,53%  100,251 23,808 0,036 76,25%  100,982 36,236 0,016 64,12%  101,597 48,711 0,028 52,06% 

 
As certain models had many nodes because of its dimensions, for a given stretch the results were omitted as 

indicated in Table 1 from the node at x = 0,008, indicating only the last 7 nodes in the near of plate edge. 
 

3.2. Results of tension flow study 
 

In tension flow study, in the two regions of the curve of stress diagrams, corresponding the first region to the 
equation (6) and the second region the equation (7) and equation (8) and their errors, we can observe the deviation of 
the flow over the theoretical flow expected, as follows in Table. 

 
Table 2: Theoretical and numerical integrations for tension flow 

 
A2 A λ A1 In ME In ME 

Flow 
Deviation 

0,02 0,0731077 9,9193372 0,0084225 9,9924449 0,0084225 0,08% 
0,05 0,0735933 3,8926744 0,0102852 3,9662677 0,0102852 0,84% 
0,1 0,0746763 1,9479854 0,0064163 2,0226616 0,0064163 -1,13% 

0,15 0,1327968 3,8375694 0,0156994 3,9703661 0,0156994 0,74% 
 
For the main features of the models, is noted a good relation between the integrations for each region of the curve, 

beyond compliance in the systematic error on the numerical integration of the second region of the curve (ME). 
 

3.3. Analytical approach of the stress diagram  
 
The analytical integration of equation (11) to the function (10) and simplifying the expression obtained, through 

division by σ0b and replacing the formulas (9) and λ=l/b, permits to isolate the coefficient c0 as a function of 
geometrical parameter λ and function Y(λ): 
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 (13) 

 
Replacement of λ values used in numerical analysis (Table 1) in equation (13) shows that c0 (λ) increases 

significantly with increasing relative crack length λ (Table 3). 
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Table 3: Values for c0 coefficient 

 
λ Y(λ) c0(λ) 

0,02 1,0033755 0,1226787 
0,05 1,0100686 0,2122959 
0,1 1,0249068 0,3346946 

0,15 1,05227 0,4380178 
 
Based on the values of c0 (λ), can be constructed stress diagrams according to the formula (10). The results are 

presented graphically in comparison with diagrams obtained by finite element method and the asymptotic (1) in Figures 
6, 7. All diagrams were drawn for the minimum section of the plate, starting from the crack tip to the plate edge; and for 
experimental stress curve (σ), was omitted the point in crack tip due the high value, as shown in Table 1. 
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Figure 6: Stress diagrams for λ=0,05 
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Figure 7: Stress diagrams for λ=0,15 
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3.4. Results for extension of plastic zone 

 
The analytical integration of the global equilibrium condition for the stress distribution, according to equation (12), 

results in algebraic equations for parameter z = Rp/R. The resolution of this equation requires application of a numerical 
iterative procedure, whose results, along with values of c0 (λ) and s=σ0/σe, allow to calculate values of parameters p and 
p1. Thus, we can proceed to calculate the extension of plastic zone Rp, matching the first and second line of the formula 
(12). 

Finally we determine the correction factor applicable to the first estimate (4), q= Rp / Rp1. The obtained values are 
shown in Table 4. 

 
Table 4: Correction factor of the extent of plastic zone given by eq. (4) 

 
s=σ0/σe λ=0,02 λ=0,05 λ=0,10 λ=0,15 

0,01 1,006 1,021 1,069 1,187 
0,05 1,014 1,034 1,087 1,211 
0,10 1,026 1,052 1,115 1,248 
0,15 1,040 1,074 1,148 1,296 
0,25 1,073 1,131 1,241 1,436 
0,35 1,114 1,208 1,382 1,677 
0,50 1,199 1,387 1,795 2,707 
0,60 1,276 1,583 2,533 not exist  
0,70 1,378 1,919 not exist not exist 

 
Is observed the strong effect of the load factor s on the correction factor, as well as the increase of this effect with 

increasing relative length of crack. The diagram of elastic-plastic distribution (12), according to one of the combinations 
of load and geometry, is illustrated in Figure 8, for a particular stretch starting from the crack tip. 
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Figure 8: Diagram of elastic-plastic stress in crack tip for λ = 0.05 s = 0.1 
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4. DISCUSSION AND CONCLUSIONS 
 

The numerical investigation of the boundary problem of linear elasticity for plates with a central crack, subjected to 
traction orthogonal to the crack surface made it possible establish proportions to model(length/width) and confirmed the 
validity of the asymptotic analytical solution (1) nearby the cracks. For various values of relative crack length was 
found that: the normal stress diagram is monotone decreasing, from the crack tip to free edge; the zone of stress 
concentration is highly localized; in large areas of free edges there is clear trend to the value of external load σ0, applied 
far from the crack. These observations allowed the development of an analytical approach to stress diagrams in the 
section with a crack. Moreover, since the behavior of the stress diagram near the free edges does not depend on the 
relative size of stress concentrator in plate center, the local phenomena of plastic deformation near the crack tips should 
also not affect the state of tension in this area. This fact indicates that the redistribution of stress due to formation of the 
plastic zone is a phenomenon of limited extent and not completely changes the diagram 

The study of tension flow was performed by integration of normal-tension diagram in minimal section. In the 
region of asymptotic, the stretch of diagram was integrated analytically. In the remaining area, the approximate 
integration was performed using the Simpson Rule (1/3) and Trapezoid. The values of tension flow for the considered 
cases showed good correspondence with tension flow applied externally to the plate, with a difference not greater than 
1,5%, matching the error margins in numerical integration and numerical solution of boundary problems. Therefore, the 
law of global equilibrium was applied to determine the tuning parameter in the analytical approach of normal-tension 
diagram. The formulas of analytical approach, developed in this way, show good correspondence with values of 
numerical solution and can be used more easily in various tests of structural integrity. 

The study of plastic zone extent was performed based on numerical and analytical results obtained in the 
investigation of theory of elasticity problems. The proposed model of tension flow redistribution considers that the local 
relief, due to plastic deformation near the crack tip, means increasing the effective load acting on the near region, where 
the stress distribution is determined primarily by the asymptotic (1). The increased tension in the large region between 
this zone and the freeboard is secondary; the modeling follows the standard of elastic diagram approach, with tuning 
parameter necessary for continuity reasons. The results showed that both the relative crack length, as the relative level 
of loading influence the correction factor, which must be applied to the simple estimative of the extent of plastic zone 
under plane stress (Eq. (4)). 
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