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Abstract: The drawing process is used for manufacturing parts in many industries. The subject has been studied with 

different methods of analysis. Many researchers developed  analytical relationships to estimate the drawing forces. 

Some experimental investigations  were done to support the estimations of analytical studies. The numerical 

simulations of computational models rely mainly on finite element technique. In this paper, a computational model is 

simulated to estimate the drawing force for the production of a tube sinking. The contact problem between the tube and 

die presents difficulties related with the choice of element type, convergence rate and number of iterations. The 

lubricant quality, die semi-angle influence the drawing forces. The fem simulation numerical results are compared to 

analytical upper bound solutions for a  cold drawing quasi-static process. 
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1. INTRODUCTION  
 

The cold drawing process is extensively used for the production of cylindrical parts, auto-parts, panels, etc… A 

large portion of automotive parts are produced via metal pressing processes. This important metal manufacturing 

process has been studied in different opportunities. Researchers have employed analytical, experimental and numerical 

methods to estimate the drawing forces. However, the number of factors affecting the process is large.  Complete 

modeling is very hard as defects such as wrinkling, tearing, etc…are of difficult handling by analytical approaches. 

Moreover lubricants, grade of the metal blank, adjustment of drawing parameters constitute other factors influencing the 

quality of the final work piece. Better lubricants and better understanding of the effect of the friction on the drawing 

forces are important on production costs.  

 

2. FORMULATION 

2.1 Analytical Approach 

 
The geometric and kinematics parameters of the process are represented on Figure 1. The external radius at the 

admission section A  is iR  whereas the external radius at the exit section E  is 0R . Thickness in these sections is 

it and 0t . The die semi-angle is α  . The contact between the tube and die extends from section B  to section D  and 

the length of contact measured on the symmetry axis is L . The velocity at the admission section is iV  and the velocity 

at the exit is 0V . Along the contact region it is assumed the existence of Tresca friction stresses between the surfaces of 

the tube and die.  The radial coordinate along the process is ρ . dAP

0A

a∫σ=  is the drawing force on the exit section.  

There are several simplifying assumptions about the material, stress distributions and rigidity of the operation tools, 

concerning the analytical relations. The main simplifications are (Marciniak and Duncan, 1992): 

 

• The material of the blank is considered to be isotropic, perfectly plastic; 

• During the deformation process, the blank thickness remains constant;  

• Plane strain conditions are assumed together with incompressibility during plastic deformation.  
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Figure 1 Geometrical and kinematics parameters of the drawing process 
 

Equilibrium of axial forces in the longitudinal direction over the slab between positions x , with axial stress aσ , 

and dxx + , with axial stress aa dσ+σ , leads to: 
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where p
 

is the lateral contact pressure and τ  the corresponding frictional stress. 
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describes the evolution of internal surface of 

the die, in this case, a conical section.  

 

In the same form, equilibrium in the circumferential direction, with internal compressive stresses denoted as θσ , 

gives: 
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Evidently the larger the thickness of the tubular, the smaller the circumferential stress.  

Likewise, equilibrium in the radial direction, taking the middle surface as reference, and denoting the radial 

component as rσ leads to the equation:  
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Comparison of the last two results, Eqs. (3) and Eq. (4), shows that: 

 

r
t4
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σ

−π
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what shows that the extreme stresses are aσ on the traction side, and θσ on the compression side. Tresca yield criterion 

of elastoplasticity for an elastic-perfectly-plastic material, with flow stress 0σ , writes as: 

 

0a σ=σ+σ θ  (6) 

 

Tresca friction model is chosen to model interface contact under inelastic conditions. Interface stresses are related 

to flow stress by means of a coefficient of friction m , particular to each interface-material set (Zimmermain and 

Avitzur, 1970): 

 

3
m 0σ

=τ  (7) 
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Introduction of Eq. (5) into Eq. (6), and considering Eq. (7), gives contact pressures in terms of the axial stresses: 
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and therefore, allows us to write axial equilibrium, Eq. (2), with disregard to the thickness variations, in the form: 
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where coefficients are defined as: 
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This equation may be solved numerically. When b  term is small, an analytical approximate close form solution 

may be obtained. From Eq. (9):  
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whose integration produces (Luis, León and Luri, 2005): 
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with 0)L(a =σ . 

 

An energy method can be considered for the steady state process. The work rate for the drawing W& can be 

calculated as the sum of the plastic deformation work rate pW&  and the work rate dissipated fW&  to overcome the 

friction against the die. Total work rate can be expressed by: 

 

fp WW W &&& +=  (16) 

 

The axial component of the plastic work rate PVWa =& , with drawing force computed from integration of the axial 

stresses aσ at the section, whose flow velocity is V . Friction dissipation computed from the frictional stresses and 

tangential components of velocity, computed supposing mass conservation along the process. 

The volume of material passing the admission section A  and the volume of material at the exit section E  per unit 

of time are the same. Therefore we can establish for any section: 

 

RVt 2tVR 2 iii π=π  (17) 
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where it  is the the tube thickness at the admission and i
0

i
0 V

R
R

V =  for constant thickness. 

 

The rate, at which plastic work is done on the material passing between the initial contact section B  and the end of 

the contact region D , as represented in Fig. 1, corresponds to: 

 

∫ ε′σ′π= dtVR 2Wp
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where ][ 22

r
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3

θσ+σ+σ=σ′  stands for the flow stress and ]ddd[d 22

r

2
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2

θε+ε+ε=ε′ is the effective strain 

increment. The integral represents the plastic work per unit of volume of material.  

At the contact between the tube external surface and the die internal surface, the process starts approximately as a 

circumferential compression. The thickness of the tube increases from the contact entrance section B  until an 

intermediate section is reached. Beyond this point the thickness starts to decrease until the exit section of the contact 

region between tube and die. However in many cases it is sufficiently accurate to consider that the drawing process 

happens with an approximate thickness, what conducts to a plane strain condition.  The strains in circumferential and 

axial directions, 00 R/)RR( −=εθ  and dx/dua =ε , lead to the circumferential increment: 

 

R/dRd =εθ  (19) 

 

Under this assumption and the incompressibility assumption, it can be considered that the circumferential strain 

increment and the axial strain satisfy the following condition add εεθ −= , and then: 
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2.2 Finite Element Approach 
 

Solution of nonlinear mechanical problems involving contact with large deformations and rotations, discretized 

with finite elements, may be constructed from the principle of virtual work, in rate form: 

 

∫∫∫∫ −−+=

ttct VSSV

dVdSdAdVG vfvtvλLσ δδδδ ...:       (21) 

where σ  are Cauchy stresses, t are surface tractions, present on TS surfaces, λ are the contact stresses present on 

cS surfaces and f are the applied forces. Velocity gradient  is vL x,∂= , being v  the velocities and ),(ˆ tXxx = the 

displacement mapping, from which the deformation gradient xF X,∂= . 

 In an incremental Lagrange procedure, discrete configurations are verified during processing. So, if at time t, 

equilibrium is attained, 0=tG , and the value at t+1 is sought, GGG tt ∆+=+1 , with the increment G∆  computed 

in an implicit manner. It results: 
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where: 
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where the normal and tangential components of friction depend upon the model used. 
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 Upon using finite element discretization, velocities may be interpolated as 
NNvv = so that: 
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T
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If the internal and contact vectors increments are factored in terms of a stiffness matrix and increment of displacements, 

it turns out that: 

 

 

 FuKK cm ∆=∆+ )(           (27) 

 

being mK the mechanical matrix and cK the contact matrix (Belytschko, Liu and Moran 2000). These matrices depend 

upon the constitutive elasto-plastic matrices of the conforming material, as well as the constitutive equation for the 

interface interaction.  

 

2.3 Finite Element Results  

 
Both approaches to the solving of the problem were used in the modeling of drawing process, under quasi-static 

conditions of a tubular element. In the problem, as no mandrel is present, internal surface of the tube as well as the 

entrance surface, are tS surfaces, with zero traction applied. Contact occurs with the rigid die, with constant inclination, 

on a cS surface, whereas drawing is applied, with prescribed velocity at the exiting surface, vS . In particular, the case 

of very thick tubing was considered. Material properties are included in Table 1, for an commercial type of aluminum, 

whose modulus of elasticity GPa7.71E =  and Poisson’s ratio , at a constant strain rate of 
1s10.0 −

.  

 

Table 1. Material Data Sheet 

 

Equivalent Plastic deformation pε′  Yield stress yS [MPa] 

0.00 60 

0.125 90 

0.250 113 

0.375 124 

0.500 133 

1.00 165 

2.00 166 

 

 

 

Finite element modeling of the drawing process of a slab moving through a rigid die of length 300 mm, with radius 

of 100 mm, semi-angle 10 degrees, under a constant strain rate, using processor of program Abaqus (Hibbitt and 

Sorensen, 2002) was used to verify the approximate analytical model presented above. In Fig. 2 the deformed 

configuration of the material is shown. Observe the large amounts of straining, mostly due to shear, present around the 

processing tool. Residual deformations appear at the exiting sections.  

Analysis was performed in a multi-step approach for the steady-state case. It consisted of an initial lateral squeeze, 

to impose initial contact of the blank against the conical die. Axisymmmetric elements were used. The interface was 

assumed to behave as a Coulomb-Tresca, with friction plastic coefficient 03.0m = . Heat generation effects were 

disregarded. Symmetricity of boundary conditions was considered in the problem in order to reduce size. Loading was 

applied by means of displacements at the exit section of the blank. As an implicit method of solution was used, 

simulation variables had to be dealt with care, as in regions of high shearing, as the entrance region for example, 

conducted to convergence problems. For the free surfaces, zero traction was assigned. Drawing force was computed 

from the exit axial stresses.  

The interface normal and tangential stress distributions acting along the contact zone were also computed and 

compared with the analytical formula. As predicted thickness direction stresses are small. High stresses in the transition 

zones, the conical regions, were circumvented using smoothing of the rigid die geometry.  
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Figure 2. Intermediate deformed shape of material during process 

2.4 Comparison 
 

 Approximate analytical and numerical results, derived from the procedures discussed above, may be compared 

as shown in the table 2. An acceptable, in engineering terms, error appears, even though flow stresses corresponding to 

average degrees of hardening of the material in the process were used. Other wise errors would be larger. (Karnezis and 

Farrugia, 1998) 

 

Table 2. Maximum drawing forces 

 

Analysis Type Drawing Force, (N) 

Aproximate analytical solution 19250 

Finite element approach 18046 

 

3. CONCLUSIONS 
 

Model presented here may be extended, with the development of the complete close form solution. Furthermore 

isotropic hardening of the material may be considered, with use of a Datsko power function. As it is, the model shows 

an acceptable agreement with the finite element results, so that potentially effects of the die angle, coefficient of 

friction, rate and temperature of the blank may be analyzed with it.  
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