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Abstract. Viscoelastic materials have been widely used over the last two decades for passive noise and vibration damping
in several kinds of machines, vehicles, industrial equipments and structures. However, only recently the progess in the
field of material technology, combined to the apparition of more efficient techniques for numerical modeling and experi-
mental characterization of viscoelastic behaviour of systems equipped with viscoelastic elements permitted to extend the
applications of these materials to complex industrial systems. A natural extension of the already obtained advances con-
sists in developing procedures for numerical modeling and experimental characterization of the excitation frequency and
temperature effects on the performance of viscoelastic dispositives. In particular, there is great interest in predicting the
effects of internal self-heating effects of these materials when applied as passive constrained layer or discrete dispositives,
and subjected to diferent kinds of cyclic loads, since heating leads to modifications of the mechanical properties of the
material due to the intern processes of relaxation and fluency, affecting the damping capacity of these materials. In this
context, the present work presents the development and validation of a finite-element based computational modeling pro-
cedure, with the use of the comercial FE code ANSYS TM , to characterize the internal self-heating effect of viscoelastic
materials submitted to cyclic excitations. The present work focuses on discrete viscoelastic dispositives such as rotational
mounts and translational joints. The treatment of the thermoviscoelasticity problem consists in an iterative procedure in
which structural and thermal analyses are sequentially performed, with the actualization of the mechanical properties of
the viscoelastic material in function of the temperature.

Keywords: damping, passive vibration control, thermoviscoelasticity, finite elements.

1. INTRODUCTION

Self-heating effects occur when dynamic loads are applied over viscoelastic materials and are caused by the con-
version of a part of the strain energy into heat. The resulting temperature field values depend both on operating factors
(strain rate and amplitude), structure configuration (contact surfaces for heat exchange) and material parameters (loss
factor, thermal conductance, specific heat and thermal conversion ratio). Several analytical and experimental studies have
shown that cyclic load cause continous temperature increases and reach critical values ((Merlette, 2005)). As recalled by
(Lesieutre and Govindswamy, 1995), the evolution of the temperature field can result in two distinct phenomena, namely:
a) the thermal equilibrium, which occurs after a large number of cycles if the influence of the reached temperature field on
the mechanical properties is small enough. In this configuration, since the pseudo-equilibrium is reached, the temperature
gradually increases at a very small rate until the load is removed b) the "thermal runaway", which happens when the heat
generation is large enough to cause chemical reactions which causes material softening and may result into irreversible
degradation of the structure.

Only few studies present modeling strategies for the simulation of self-heating effects, since the problem involves
the resolution of coupled transient thermal and structural equations. (Gopalakrishna and Laï, 1998) presented an iterative
methodology to determine the equilibrium temperature field inside a translational joint. Rittel (1999) defined the heat
source as a fraction β of the mechanical power dissipated by the viscoelastic effect, and has shown through the application
of cyclic loads over polymeric samples that β values depend on the strain rate and amplitude. Merlette (2005) recalled
that usual β values for most viscoelastic polymers are comprised between 0,1 and 1 and identified a set of β values
corresponding to a series of tests performed with translational mounts. The curve-fitting procedure was based on the use
of a simplified 4-DOF thermomechanical model.

Further sections of this paper present the basic concepts of viscoelastic behaviour in the frequency domain and in-
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troduce the analytical expression of the transient heat equation. Subsequently, the experimental results are presented and
the influence of the strain amplitude over self-heating is discussed. Finally, the curve-fitting procedure and results are
presented.

2. THEORETICAL BACKGROUND

This section is devoted to the description of the dynamic behaviour of viscoelastic materials and obtention of the
transient heat equation for the coupled thermomechanical problem. In this particular case, the viscoelastic dissipative
effect is taken into account and the expression of the heat generation rate is obtained from the analytical expression of the
dissipated power.

2.1 Viscoelastic material modeling approach

The response of viscoelastic materials to imposed loads and displacements is characterized by a delay with respect
to the sollicitation. In the case of constant loads imposed over a significant time range, the material response can be
adequately represented by a relaxation function, whereas in the case of more complex, time-varying sollicitations, the
whole strain history has to be taken into account to establish the stress-strain relationship. For linear viscoelastic materials,
the stress state in the material at time t is equal to the sum of all previous contributions. According to Christensen (1982),
the application of this assumption to the case of a continuous strain history between t = 0 and t leads to the following
convolution integral:

σij(t) =
∫ t

0

Gijkl(t− τ)
dεkl(τ)
dτ

d τ (1)

where σij(t) and εkl(τ) are the stress and strain tensor expressed at time t and τ . Gijkl(t−τ) is the fourth-order relaxation
tensor at time t − τ . The variable τ is used to describe the summation of infinitesimal contributions over the entire time
range. Eq. (1) can be used to represent the transient behaviour of viscoelastic materials under continuous time-varying
sollicitations. However, its use is unnecessary when the material response to a cyclic load reaches the harmonic steady
state oscillation condition after an accomodation phase. Christensen shows that, for this particular case, the stress-strain
constitutive relationship in the frequency domain can be writtem in terms of a complex, frequency-dependent relaxation
tensor through the application of the Fourier transform to Eq. (1):

σ̂ij(ω) = G∗ijkl(ω)ε̂ij(ω) (2)

where σ̂ij(ω) and ε̂ij(ω) are the stress and strain tensors expressed in the frequency domain. According to Nashif et al.
(1985) the one dimensional-stress-strain relationship can be expressed in terms of the complex modulus E∗(ω) through
the following form:

σ̂(ω) = E∗(ω)ε̂(ω) = E
′
(ω) + iE

′′
(ω) = E

′
(ω) [1 + iη(ω)] (3)

where E
′
(ω) and E

′′
(ω) are the storage and loss moduli of the viscoelastic material and represent, namely, the elastic

and dissipative behaviour of the viscoelastic material. As shown by Eq. (3) is is possible to factor out the storage modulus
from the complex modulus expression and express its imaginary part in terms of the loss factor, which corresponds to the
ratio of the loss and storage moduli. Recalling that in the case of steady-state harmonic loads ε̂(ω) = ε0e

iωt and through
elementary algebric manipulations, one can show that the stress response lags the strain by a phase angle δ whose value
is linked to the complex modulus magnitude and phase as follows:

E
′
(ω) =

σ0

ε0
cos δ (4a)

E
′′
(ω) =

σ0

ε0
sin δ (4b)

η(ω) = tan δ (4c)

Fig. (1) illustrates the delay between stress and strain responses for a viscoelastic material submitted to a harmonic
load and shows the histeresis loop obtained by plotting the stress versus strain. As recalled by Nashif et al. (1985), the
area inside the hysteretic loop represent the energy dissipated within each vibration cycle.

2.2 Thermoviscoelastic behaviour

According to Rittel (1999), the transient heat equation can be written as follows:

qg + k∇2T = ρcP Ṫ + (3λ+ 2µ)αT0ε̇kk (5)
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Figure 1. Harmonic stress and strain versus time (a) and elliptical histeresis loop (b) for a linear viscoelastic material

In Eq. (5), k, ρ, cP and α are namely the heat conductance, density, specific heat and thermal expansion coefficient
of the material. T0 is the reference temperature, λ and µ are the Lamé coefficients and ε̇kk is trace of the strain rate tensor.
k∇2T represents the heat conduction and is obtained by applying Fourier’s law to an infinitesimal volume (Lienhard
and Lienhard (2004)), while the rightside terms ρcP Ṫ and (3λ + 2µ)αT0ε̇kk represent namely the heat storage and
thermoelastic contribution. The latter terms are obtained by applying the second law of thermodynamics (Gaskell (2003))
and writing the pression field in terms of the stress tensor. The heat generation rate, designed by qg in Eq. (5), depends
on the dissipated mechanical power ẇm:

qg = βẇm (6)

where β represents the ratio of the heat source to the dissipated mechanical work per time unit. According to Rittel (1999)
and Rittel (2000), the complementary part of the dissipated power (1 − β)ẇm is stored into the viscoelastic material
through microstructural changes and the value of β for most viscoelastic polymers depends both on strain amplitudes and
strain velocity.

The dissipated mechanical power can be expressed as the scalar product of the stress components vector {σ(t)} by
the strain rate vector { ˙ε(t)}:

ẇm = {σ(t)}T { ˙ε(t)} (7)

= {ε(t)}TH∗(ω, T ){ ˙ε(t)}
The Poisson ratio is considered to be frequency-independent as a first approximation. Thus, by assuming material

isotropy, one can factor out the complex modulus from the elasticity matrix and rewrite Eq. (8) in terms of the complex
modulus and normalized elasticity matrixH:

ẇm = E∗(ω, T ){ε(t)}TH{ ˙ε(t)} (8)

Writing Eq. (8) for the case of cyclic stress-strain states for which { ˙ε(t)} = iω{ε(t)} leads to a complex expression
of ẇm, whose real and imaginary parts are respectively proportionnal to the loss and storage moduli:

ẇm = iω{ε(t)}T H̄{ε(t)}E′(ω, T )︸ ︷︷ ︸
ẇmi

−ω{ε(t)}T H̄{ε(t)}E′′(ω, T )︸ ︷︷ ︸
ẇmr

(9)

At this stage {ε(t)} should be written in term of the strain amplitude components vector {ε0} multiplicated by a
sinusoidal factor to describe its variation over time:

{ε(t)} = {ε0} sin(ωt+ δ) (10)

where δ is the lag between strain and stress. Therefore it is possible to show that the imaginary contribution ẇmi to the
viscoelastic dissipation equals to 0 over a vibration cycle:
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∫ t+2π/ω

t

ẇmidt =
∫ t+2π/ω

t

{ ˙ε(t)}T H̄{ε(t)}E′(ω, T ) dt (11)

= ω{ε0}T H̄{ε0}E′(ω, T )
∫ t+2π/ω

t

sin(ωt+ δ) cos(ωt+ δ) dt︸ ︷︷ ︸
0

ẇmi represents the purely elastic power stored by the material. On the other hand, ẇmr corresponds to the viscous power
and thus represents the nonzero contribution to viscoelastic dissipation:

ẇm = ẇmi (12)
= −ω{ε0}T H̄{ε0}E′′(ω, T ) sin2(ωt+ δ)

showing that the viscoelastic dissipated power is not constant over a vibration cycle and that its variation depends on the
strain amplitude at each time instant. Using this form of Eq. (12) to compute the heat generation rate for the thermome-
chanical coupled-field analysis would result in a high computational cost since at least 10 time steps by period would be
necessary for the time integration of Eq. (12); moreover, significant evolutions of the transient temperature field usually
can be observed only on much wider time scales than for mechanical phenomena.

To avoid further useless computational issues it is possible to rewrite Eq. (12) substituting the amplitude factor
sin2(ωt+ δ) by the average value of the quadratic sine function:

ẇm = −1
2
ωE

′′
(ω, T ){ε0}T H̄{ε0} (13)

and obtain the following expression for the heat generation rate:

qg = |βẇm| = 1
2
βωE

′′
(ω, T ){ε0}T H̄{ε0} (14)

Finally, introducing Eq. 14 in 5:

1
2
βωE

′′
(ω, T ){ε0}T H̄{ε0}+ k∇2T = ρcP Ṫ + (3λ+ 2ν)αT0 ˙εkk (15)

In the present case, the viscoelastic layers of the damping device are submitted to shear loads only, so that normal
strain components can be considered to be null. The transient heat equation can now be rewritten in the following form:

1
2
βωE

′′
(ω, T ){ε0}T H̄{ε0}+ k∇2T = ρcP Ṫ (16)

3. EXPERIMENTAL STUDY

3.1 Dispositive

Fig. 2 shows the complete experimental test dispositive. The test sample consists in a translational damper formed by
two 3M VHB 9469 TM 5 mm thick viscoelastic layers stuck between three steel blocks. The blocks were bolted to a rigid
frame that was inserted in the universal test MTS TM machine.

As shown by Fig. 2 the temperature inside the viscoelastic layers has been measured by 6 copper-constantan thermo-
couples. As the 1mm thick viscoelastic foils were stuck together to form the final viscoelastic layers, the thermocouples
were inserted at 6 pre-defined positions. The thermocouples were linked to an Agilent 34970 A signal analyzer.

3.2 Results

6 tests were performed, each one consisting in applying a vertical displacement v(t) = v0 sin (2πft) during 3360
seconds by means of a tensile machine. The thermal aquisition system was set to read and store the temperature values
with a two seconds resolution, during the loading phase and after the removal of the imposed displacement in order to
capture local temperature evolutions during the unloading phase.

Tab. 1 shows the frequency and amplitude values associated to each test.
Fig. 3 shows the temperature measured by the thermocouple T2 for each test. T2 was localized at the mid-point of

a transverse (i.e., paralel to the viscoelastic layer main section) plane that was 1mm distant from the central steel block.
It can be seen that the imposed displacement amplitude has a strong influence over the temperature values reached due to
self-heating effects; it can also be noted that all test curves permit to identify a progressive stabilization of the temperature
during the loading phase and a strong and immediate decrease of the temperature values after the removal of the loads.
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(a) (b)

Figure 2. Detailed view of the experimental apparatus (a) and of the test sample (b)

Table 1. Description of the test parameters

Test a b c d e f
f [Hz] 10 15
v0 [mm] 0,5 1 1,5 0,5 1 1,5

4. NUMERICAL SIMULATION

4.1 Incorporation of the viscoelastic behaviour into FE models

Considering a viscoelastic element, the integration of the movement equation in the frequency domain leads to the
following equation:(

[K∗(ω, T )](e) − ω2[M ](e)
) {u(ω)}(e) = {f(ω)}(e) (17)

were [K∗(ω, T )](e) is the complex, temperature and frequency-dependent stiffness matrix of the element since the be-
haviour of the viscoelastic material is represented by the complex modulus. Elementar matrix assembly permit the obten-
tion of the global, finite-element discretized system:(

[Ke] + [K∗
v (ω, T )]− ω2[M ]

) {u(ω)} = {f(ω)} (18)

where [Ke] and [K∗
v (ω, T )] correspond, namely, to the elastic and real stiffness matrix, associated to purely elastic

DOFs, and to the complex stiffness matrix, associated to viscoelastic DOFs. By assuming a temperature and frequency-
independent Poisson ration and for isotropic materials (de Lima and Rade (2005)) the complex modulus can be factored
out the complex stiffness, introducing the normalized, temperature and frequency independent stiffness matrice [K̄v]:

[K∗
v (ω, T )] = E∗(ω, T )[K̄v] = E

′
(ω, T ) (1 + iη(ω, T )) [K̄v] (19)

where the imaginary part of [K∗
v (ω, T )] represents the proportional damping matrix of the system. The implementation

of material dissipative behaviour in most commercial FE codes is realized through an equivalent viscous damping matrix,
formulated as follows:

[Ceq(ω, T )] =
E
′
(ω, T )η(ω, T )

ω
[K̄v] (20)

Thus we obtain the global equation of the structural harmonic finite-element subproblem:(
[Ke] + E

′
(ω, T )[K̄v] + iω[Ceq]− ω2[M ]

)
{u(ω)} = {f(ω)} (21)
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Figure 3. Temperature measured inside the viscoelastic layer for f = 10 Hz (a) and f = 15 Hz (b)

4.2 Formulation of the heat font in the FE context and sequential iterative solution

This subsection introduces the detailed procedure for the resolution of the thermoviscoelastic coupled problem in
the finite element context. Since direct coupling between thermal and structural fields would result in prohibitive com-
putational costs, the problem was solved using a weak coupling procedure in which harmonic structural and transient
thermal analyses were performed alternatively. The complete, sequentially-coupled problem is described by the following
matricial system:[

[0] [0]
[0] [A]

]{ {u̇(ω0)}
{Ṫ}

}
+
[

[Z∗(ω0, T )] [0]
[0] [W ]

]{ {u(ω0)}
{T}

}
=
{ {f(ω0)}
{q}+ {qd}

}
(22)

in which [A] and [W ] are namely the thermal damping and stiffness matrix, whose formulation is based on the thermal
elements shape functions and on the specific heat and thermal conductivity, which are considered to be temperature-
independent in this application. Z∗(ω0, T ) = [Ke] + E

′
(ω0, T )[K̄v] + iω0[Ceq] − ω2[M ] is the complex dynamic

stiffness matrix that represent the mechanical behaviour of the structure for a constant frequency ω0 at temperature T .
{q} is the vector of thermal loads obtained from boundary conditions and {qd} represents the nodal heat generation vector,
obtained from the strain energy whose calculation is based on the structural response. In the ANSYS TMFE code the heat
generation rate has to be defined for each viscoelastic element. The following expression for element heat generation can
be obtained by integrating the heat generation rate defined in Eq. (14) over the element volume:

q(e) =
1
2
βω0η(ω0, T )

V(e)
{u}T(e)[Kv(ω0, T ](e){u}(e) (23)

where [Kv(ω0, T ](e) is the real part of the element complex stiffness matrix and V(e) is the volume of the element. Eq.
(23) corresponds to an approximate definition of the heat generation rate since its value is considered to be uniform within
the element volume. However the comparison of the model to experimental results tend to prove that the relative error
due to the heat source calculation is neglectible for a sufficiently refined mesh.

Fig. 4 represents the iterative solution flowchart for the iterative solution. The resolution of the problem has been
implemented using the APDL (Ansys Parametric Design Language) code, which is a built-in programmation language for
the ANSYS TM software.

4.3 Curve-fitting procedure

In the previous subsection the finite element formulation for the thermoviscoelastic sequentially coupled analysis has
been presented. Direct comparison of the model to experimental results is not possible since there is no data available for
the values of two parameters, namely the thermal conversion ratio β and the film coefficient for natural convection heat
transfer h. In order to identify the values of these parameters, a curve-fitting procedure has been developed, based on the
thermomechanical simulation tool. An optimization routine was used to minimize an objective function defined as the
sum of the squares of the offsets of the numerical solution to the experimental points.

The differential evolution method, based on genetic algorithms, was chosen to adjust the model, with β and h as the
optimization variables. Fig. 5 represents the finite element model of the test sample, using the following ANSYS TMfinite
elements:
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Figure 4. Flowchart for sequentially coupled thermomechanical self-heating analysis

• SOLID45, used for the structural subproblem, is a 8-node volume element having 3 DOFs per node, namely the x,
y and z displacements;

• SOLID70, used for the thermal subproblem, is a 8-node volume element having 1 DOF (the temperature) per node.

From Fig. 5 it can be seen that only half of the domain corresponding to the test sample has been modeled due to a
symmetry with respect to the mid-plane. This required the application of the following specific boundary conditions on
the symmetry plane (an null heat flux and prohibited normal displacements).

(1) Symmetry plane
(2) 1020 Steel
(3) 3M VHB 9469 TM

Figure 5. Finite element model of the test sample

Tab. (2) contains the thermal properties values for the 1020 steel and VHB 9469 viscoelastic material.
A table containing the complex modulus values for the simulation frequencies (10 and 15 Hz) and for the temperature

range [25◦ C : 50◦ C] was defined by polynomial interpolation from the VHB 9469 nomograph presented by Fig. (6).
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Table 2. Thermal properties for the 1020 steel and the VHB 9469 viscoelastic material

Material k [W.m−1.K−1] ρ [kg.m−3] cP [J.kg−1.K−1]
1020 Steel 35 7850 476
VHB 9469 0.16(1) 1000(1) 2000(2)

(1) from the 3M technical bulletin, 2003
(2) from Merlette, 2005

Figure 6. 3M VHB 9469 TM nomograph. Source: 3M TM Technical Bulletin (2003)

4.4 Results

This subsection presents the results of the curve-fitting procedure applied to the finite element model. The results of
test b , obtained with v0 = 1 mm and f = 10 Hz, has been used to identify the h and β values. After 50 evaluations
of the objective function, the optimal values of hopt = 13.016 W.m−2.K−1 and βopt = 0, 1755 were found. Figure (7)
presents the experimental temperature measured by thermocouples T2 for test b and the numerical solution obtained with
the optimal values hopt and βopt.
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Test
βopt = 0.1755

Figure 7. Curve fitting result for test b

For the tests a, c, d, e and b the values of β were fitted to test results considering h = hopt. For each test, the optimal
value of β was identified through an iterative reduction of the search interval, using the golden section algorithm. As
shown by Fig. (8), the search interval has been determined previously by manual adjustment of the model in order to
reduce the number of iterations for the identification of β.

Table (3) shows the βopt values for each test. It can be seen that the higher the strain amplitude, the lower the value
of β. A similar trend had been observed by (Merlette, 2005), and can be explained by the fact that the complementary
part of the dissipated power is stored in the material through microstructural changes. Consequently, a higher the strain
amplitude would result into more important modifications in the material microstructure, accounting for a lower fraction
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Figure 8. Illustration of the search interval reduction for test e, with βmin =0,1 and βmax =0,12

of the dissipated energy converted into heat.

Table 3. βopt values

f [Hz] 10 15
v0 [mm] 0.5 1 1.5 0.5 1 1.5
βopt 0.2055 0.1755 0.15 0.1324 0.1079 0.0771
Fobj 10.8141 15.5463 65.2724 7.5945 35.1145 137.6865

Figures (9) and (10) present the results of the curve-fitting procedures for test a, d, c and f. It can be seen from Fig.
(9) that, for tests a and d, the noise on the experimental curve, which is probably due to the acquisition equipement, is
more visible since the self-heating effects are less important.
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Figure 9. Curve-fitting results for tests a (a) and d (b)

5. CONCLUSION

In this paper, a procedure for coupled self-heating effects finite-element modeling has been proposed and succesfully
compared to experiment results. However it should be noticed that the values of β obtained through the curve-fitting
procedure are lower than the values observed by Merlette, for a similar material. This difference can be explained by
the fact that the test sample was formed by laminates, turning inhomogeneous the viscoelastic layers, and that losses of
energy may have occured at the interfaces between the laminates. In further works, the same kind of experiments should
be performed with homogeneous blocks of viscoelastic materials, which may turn more difficult the insertion of the
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Figure 10. Curve-fitting results for tests c (a) and f (b)

thermocouples in the viscoelastic material but, on the other hand, would result in a more reliable experimental-numerical
comparison.
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