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Abstract. Polydimethylsiloxane (PDMS) is a commercially elastomer used as both a structural component in micro-
electromechanical system devices and a stamping material for creating micro- and nanoscale features on surfaces. 
This paper describes and analyzes the mechanical behavior of polymer polydimethylsiloxane (PDMS) submitted to 
large deformations without destruction. The goal is to estimate the angular distortion associated with different applied 
forces, considering a simple shear test. The experimental procedure is carried out using the digital image correlation 
(DIC) method, which is an optical-numerical experimental approach developed for full-field and non-contact 
measurements. The material parameters, associated with classical Mooney-Rivlin model, are estimated from 
experimental data by means of Levenberg-Marquardt method. In addiction, it is proposed a new non-linear model and 
three new material parameters are determined in the same way.  
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1. INTRODUCTION  
Polydimethylsiloxane (PDMS) is the most common and commercially available silicone rubber. Due to important 

characteristics, such as flexibility and stability, this material has a wide range of applications in mechanical sensors 
(Kim et al., 2008; Lin et al., 2009), electronic products (Tiercelin et al., 2006; Lee et al., 2009) and medical devises 
(Lawrence et al., 2009). There are many different types of mechanical tests for determining proprieties of polymeric 
materials (Schneider et al., 2009; Ward and Sweeney, 2004; Mujika et al., 2006; Brown, 2002). There is some special 
attention to determine the shear modulus. Shear modulus is usually measured at small strains where the stress–strain 
relationship is essentially linear. There are a number of loading systems which give rise to shear stresses including lap 
shear, punch shear, torsion and four point loading. Recently, Khan et al. (2008) presented a discussion about the 
characterization of shear deformation inshape memory polymers. A test method for determining the shear modulus of 
elastomeric bearing was proposed by Topkaya and Yura (2002). Nunes (2009) proposes to analyze the adhesive 
deformation in the single lap joint specimen and to estimate the shear modulus of Polydimethylsiloxane (PDMS) using 
the DIC method. 

The polymer PDMS presents hyperelastic behavior at room temperature condition. In the work developed by Yu et 
al. (2009), an analysis of the role of vertical component of surface tension of a water droplet on the deformation of 
membranes and microcantilevers was made using PDMS. 	  

There are many proposed strain energy density expressions in the literature. Some forms of strain-energy functions, 
which are well tried within the constitutive theory of finite elasticity and frequently employed in the literature can be 
found in  Holzapfel (2000). The most widely cited strain-energy formulations are the Mooney-Rivlin and Ogden models 
(1997). Treloar (1943) presented a well-developed experimental work. Sasso et al. (2008) and Meunier et al. (2008) 
proposed mechanical characterization tests of hyperelastic rubber-like materials using optical methods.  

The aim of this work is characterize of the polymer Polydimethylsiloxane (PDMS) submitted to large deformations 
using a method known as digital image correlation (DIC). In order to do this, an arrangement based on single lap joint 
was used to generate a simple shear behavior. The angular distortion is associated with different applied load. The 
material parameters, taking into account classical Mooney-Rivlin model and experimental data, are estimated by means 
of Levenberg-Marquardt method. In addiction to that, a new model for strain-energy function is proposed to estimate 
some mechanical parameters.   
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2. CONSTITUTIVE MODEL OF RUBBER ELASTICITY  

 
A material element dX in the reference configurations can be transformed, into a material element dx in the current 

configuration, using the deformation gradient tensor F.  The relation between this elements is given by dX =Fdx. Let us 
consider the case of simple shear deformation, illustrated in Fig. 1, which the rectangular Cartesian coordinate of any 
point of deformed element can be written as  

 

€ 

x1 = X1 + γX2;    x2 = X2;   x3 = X3                                                                                                                            (1) 
 

Using the Eq. (1), the deformation gradient tensor F can be expressed as 
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From Eq. (2), the left Cauchy-Green deformation tensor, B can be written as 
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Figure 1. Schematic of simple shear deformation 

 
There are many tensor invariants that can be written in terms of the metric tensor in the undeformed and deformed, 

as well as the relative stretches. The principal scalar invariants of the left Cauchy-Green deformation tensor can be 
determined as 

 

€ 

I1 = tr B = γ 2 + 3; 

€ 

I2 =
1
2
tr B( )2 − tr B2[ ] = γ 2 + 3                                                                                                                                   (4) 

€ 

I3 = det B = 1 
 
In this case of simple shear deformation, we take 

€ 

I1 = I2 = γ 2 + 3. For an incompressible rubber-like material 

€ 

I3  is 
equal to 1. The principal physical Lagrangian or engineering stresses is used to establish the constitutive relationship for 
a hyperelastic material and it is given by 

 

€ 

τ =
∂W
∂γ

                                                                                                                                                                       (5) 

where the strain energy function W can be expressed as a function of the shear strain. Mooney-Rivlin observed that 
rubber response is linear under simple shear loading conditions. The strain energy function depends on the first two 
invariants and the first order model is defined by 
 

€ 

W I1, I2( ) = c10 I1 − 3( ) + c01(I2 − 3)                                                                                                                               (6) 
 
where c10 and c01 are the material parameters. 
 

The purpose here is to find a close form strain-energy function, which present a simple mathematical structure to 
describe the elastic behavior of elastomers. For this, the proposed model is given by 

 

€ 

W I( ) = c1 I − 3( ) + c2 (I − 3)
1/ 2 + c3 (I − 3)

3 / 4                                                                                                                (7) 
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where 

€ 

I γ( ) = I1 γ( ) = I2 γ( ) = γ 2 + 3

I3 γ( ) = 1
                                                                                                                             (8) 

 
Substituting Eqs. (6) and (7) into Eq. (5), we have the constitutive equation using Mooney-Rivlin and the proposed 

models, respectively  
 

€ 

τ γ( ) = 2 c10 + c01( )γ                                                                                                                                                      (9) 

€ 

τ γ( ) = 2c1γ + c2 +
3
2
c3 γ                                                                                                                                          (10) 

where the shear modulus, µ, is 

€ 

2 c10 + c01( )  
 

 
3. EXPERIMENTAL PROCEDURE 

 
The experimental procedure was conducted to determine the angular distortion associate to different loads using a 

simple shearing mechanism and DIC method. The images of single lap joint specimen were captured and processed by 
means of DIC program to obtain full-field displacements. This is well established experimentally (Nunes, 2010).    

 
3.1. Material and methods 

In this work, a single lap joint is used to transfer load from one adherend to another by a simple shearing 
mechanism. The stiffness of the adherends is much greater than the adhesives, implying that the adherends do not 
deform and the adhesives only deform in shear.  The geometry is schematically illustrated in Fig. 2.   

 

 
Figure 2. Schematic of simple shear deformation 

 
In order to obtain the experimental results, the geometric shape for the single lap joint, schematically illustrated in 

Fig. 2, was considered with the following data:  (a) Different applied forces, F, from 0 to 290 N; (b) length of restraint 
against transversal motion, d = 25 mm; segment of length, D = 50 mm; joint length, L = 30 mm; joint width, w = 25 
mm; adherend and adhesive thickness, t = 1.9 mm and ta = 1.6 mm, respectively. The upper and lower adherends have 
the same characteristics, i.e., Steel A36  and the material of adhesive is Silicone rubber (Polydimethylsiloxane). 

The bonded region of the adherend received a superficial treatment. The procedure consisted of abrading the 
adherend surface at the overlap region with fine sandpaper and cleaning with acetone before the application of the 
adhesive. In order to control and to guarantee adhesive thickness, the test specimen (single-lap joint) was manufactured 
in a mold (apparatus). The applied cure cycle was 48 h at room temperature. 

The displacement measurements were carried out using digital image correlation (DIC) method. This method is an 
optical-numerical full-field surface displacement measurement (Nunes, 2010). It is based on a comparison between two 
images of a specimen coated by a random speckled pattern in the undeformed and in the deformed states. Its special 
merits encompass non-contact measurements, simple optic setups, no special preparation of specimens and no special 
illumination. 

 
3.2. Experimental set up 

 
The experimental arrangement for conducting shear testing involves an apparatus developed for applying strain in a 

single lap joint, a CCD camera set perpendicularly to the specimen and a computer for capturing and processing the 
images, as shown in Fig. 3. The single lap joint, fixed in the strain apparatus, was covered with painted speckles 
(random black and white pattern). It is in agreement with the geometrical model, as seen in Fig. 2. The CCD camera 
(Sony XCD-SX910) used to record the images of the specimen has a resolution of 1376x1024 pixels. In this 
experimental configuration, one pixel of the CCD camera corresponds to an area approximately equal to 4.65×4.65 µm2 
on the specimen. The basic idea of experimental procedure is to take the images of specimen in the undeformed and 
deformed states.  
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Figure 3. Experimental arrangement 

 
 

 
4. RESULTS AND DISCUSSION  

 
Figure (4) shows the results of full-field displacements u(x,y) and v(x,y) obtained when a load equal to 50 N is  

applied. These fields represent a surface area at adhesive region. This example was chosen to show that the 
displacement v(x,y) can be neglected when compared with the displacement u(x,y).   

 
Figure 4. Full-field displacements u(x,y) and v(x,y) for applied load equal to 50 N. 

 

 
Figure 5. Average value of displacement u(x,y) along direction x as a function of y for applied load equal to 50 N. 

 
In order to estimate the angular distortion, the average value of displacement u(x,y) along direction x as a function 

of y was considered, as illustrated in Fig. (5). Curve fit data were taken into account to evaluate the angular distortion, 
i.e., 

€ 

∂u ∂y . Due to smaller value of displacement v(x,y) the component 

€ 

∂v ∂x  can be neglected. Thus the shear strain 
can be defined as 

€ 

∂u ∂y . In Fig. (5), this value is 0.056.   
Figure (6) shows the results of the shear stress vs. shear strain. It is possible to observe a non-linearity behavior in 

shear stress-strain curve. This behavior was also observed by Lahellec et al. (2004). 
The objective is to find values for the four material parameters µ, c1, c2 and c3 in Eqs. (9) and (10), associate to 

Mooney-Rivlin and proposed models, that give the best fit to the experimental data. These parameters are estimated 
using Levenberg-Marquardt method (Nunes et. al., 2007), which is a well-known and powerful iterative method for 
solving nonlinear least squares problems of parameter estimation. These parameters are shows in Tab. 1 
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Figure 6. Comparison between experimental data, Mooney model and proposed model. 

 
Figure 7. Shear stress divided by shear strain vs. shear strain. 

 
The shear stress divided by shear strain is shown in Fig. (7). It can be see the good agreement between the 

experimental data and proposed model. However, there is a little discordance between experimental dada and Mooney-
Rivlin model. 

After fitting data using Mooney-Rivlin and proposed models by means of Levenberg-Marquardt method, the 
goodness of fit is evaluated. Table 1 shows the goodness of fit statistics for parametric models: R-square, the sum of 
squares due to error  (SSE) and root mean squared error (RMSE).   
 

Table 1. Comparison between Mooney-Rivlin and proposed model 

 
 

A better understanding of the results can be obtained plotting the residue of shear stress value. The residuals from a 
fitted model are defined as the differences between the response data and the fit to the response data at each predictor 
value. The results of residue are illustrated in Fig. 8. Clearly, the calculate residue of proposed model is smaller than the 
Mooney-Rivlin model.  
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Figure 8. Residue, 

€ 

τ Exp −τModel , for different shear strain: comparison between Mooney and proposed model 
 
 

5. CONCLUSIONS 
In the present work, the experimental data of shear strain was estimated by means of the Digital Image Correlation 

method. The purpose was taken the value of angular distortion associate with different applied forces, considering a 
simple shear test. In literature, the shear stress-strain behavior is linear. However, observing the results, it is possible to 
note a non-linear behavior in the experimental data. In order to find a best model to the experimental data, the classical 
Mooney-Rivlin and proposed models was investigated. As can be observed, there is a significant difference between the 
experimental data and the classic Mooney model, whereas the proposed model is much more closer. For future work the 
authors aim to generate more experimental data, varying geometrical parameters.  
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