
 
VI CONGRESSO NACIONAL DE ENGENHARIA MECÂNICA 
VI NATIONAL CONGRESS OF MECHANICAL ENGINEERING 

18 a 21 de agosto de 2010 – Campina Grande – Paraíba - Brasil 
August 18 – 21, 2010 – Campina Grande – Paraíba – Brazil 

 

Heat dissipation in liquid with magnetic nanoparticles in the presence of a
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Abstract. This work investigates the heating process of magnetic fluids (magnetic nanoparticles embedded in fluids) under
the external magnetic field. We adopt the well-established theoretical approach for magnetization of ferrohydrodynamics
proposed by Shiliomis et al to describe the motion of free dipoles in a viscous fluid. By taking into account vorticity
effects, we show that new features arise when a circular polarized field is considered. The interplay between the Brown
and Néel mechanisms of relaxation also presents an important role in the heating process of the liquid. The friction of the
particle rotation, due to magnetic torques, with the viscous fluid, constitutes an source of heat. Our analysis allows the
determination of the liquid temperature as a function of the model parameters. Such profile is of fundamental interest in
the emerging field of research on fuel droplet combustion with magnetic nanoparticles.
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1. Introduction

The use of alternating magnetic fields on fluids with magnetic nanoparticles (MNPs) allows a production of heat in
the host system (Rosensweig (2002)). Such heat source is due to a friction effect mediated by the viscous and magnetic
torques on the nanoparticles, being the former opposite to the latter. We propose that this mechanism of ferrofluids heating
can be also used to heat fuel droplets with MNPs (see Fig. (1)).

A theoretical study is developed for establishing the basis of future applications. In previous analyses, the determi-
nation of the heating process is restricted to quiescent fluids with linearly polarized magnetic fields (Rosensweig (2002);
Maenosomo and Saita (2006) and Fachini (2009)). We investigate the heating process for rotating fields in fluids with
finite flow vorticities. By taking into account these effects in our calculations of the heating rate function, we show that
the heating process is favored and becomes more efficient when performed with circularly polarized magnetic fields.

Figure 1. Sketch of the geometry: a fuel droplet with embedded magnetic nanoparticles.

This paper is organized as following. In Sec. 2, the phenomenological model of Shliomis et al. (1988); Shliomis
and Morozov (1994) and Shliomis (2001) for ferrofluids is discussed, particular attention is given to the relaxation mech-
anisms of Brown and Néel (Rosensweig (2002)). In Sec. 3, using the formalism of the complex frequency dependent
susceptibility (Rosensweig (2002)), we determine the net magnetization in the system due to a circular counterclockwise
polarization. The heating rate function for an adiabatic process is derived in Sec. 4, and in Sec. 5, numerical results for
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the frequency dependence of this function are presented. We summarize our findings in Sec. 6.

2. Theoretical model for ferrofluids

The phenomenological model of Shliomis et al. (1988); Shliomis and Morozov (1994) and Shliomis (2001) describes
the net magnetization ~M of a viscous fluid with rotating magnetic nanoparticles (MNPs) characterized by a macroscopic
angular velocity ~Ωp due to an applied magnetic field ~H. Magnetic and viscous torques on these particles embedded in
a fluid with vorticity flow ~Ω are considered in this model. The external field interacts with the MNP dipoles ~m forcing
an alignement with the field direction. As the particles are in contact with a thermal bath of finite temperature T , the
equilibrium magnetization

~M0 ≡
ϕ

V
|~m|L

(∣∣∣~ξ∣∣∣) ~ξ
ξ

(1)

is reached. The constant ϕ is the volume fraction of the MNPs, V is the MNP single volume and L
(∣∣∣~ξ∣∣∣) is the Langevin

function,

L (ξ) ≡ coth ξ − ξ−1, (2)

that depends on the magnitude of

~ξ ≡ |~m|
~H

kBT
. (3)

This ratio measures the competition between the magnetic energy |~m|
∣∣∣ ~H∣∣∣, responsible to orient the MNPs with the

magnetic field, and the thermal energy kBT of the ferrofluid, responsible to disorient the MNPs. Due to a mechanism of
relaxation for the dipoles, the magnetization does not reach an instantaneous equilibrium state, there is a characteristic
time that imposes a transient period. In the rotating frame of the MNPs, this relaxation process is assumed to be governed
by the equation (Rosensweig (2002))

d ~M

dt
= −1

τ

(
~M − ~M0

)
, (4)

whose solution is

~M = ~M0 [1− exp (−t/τ)] . (5)

Note that the equilibrim condition ~M ∼ ~M0 is achieved for t � τ. In the laboratory frame we have to add to the right
hand side of the Eq. (4) the contribution ~ΩP × ~M due to the magnetic torque

~τmag ≡ ~M × ~H (6)

to derive

d ~M

dt
= ~ΩP × ~M − 1

τ

(
~M − ~M0

)
(7)

known as the equation of motion for the out-of-equilibrium magnetization. The effective relaxation parameter τ consists
of two processes in parallel (Rosensweig (2002)), which is expressed as

1

τ
≡ 1

τB
+

1

τN
, (8)

with

τB ≡
3ηV

kBT
(9)

as being the Brownian time of rotational diffusion and

τN ≡ τ0
exp (KVM/kBT )√

KVM/kBT
(10)

the Néel relaxation. The fluid and particles properties in Eqs. (9) and (10) are the fluid viscosity η, the hydrodynamic
volume V of a single MNP, the constant of proportionality τ0, the anisotropy constant K and the magnetic volume VM
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of a MNP. For the Brownian relaxation mechanism, the magnetic dipoles rotate together with the particles. For the Néel
mechanism, the MNPs are steady (~Ωp = 0) and the magnetic dipoles rotate exclusively in respect to the crystal axes of
the particles. Thus considering the viscosity η of the fluid, the viscous torque

~τvisc ≡ Γ
(
~ΩP − ~Ω

)
(11)

on the rotating MNPs is opposite to the magnetic torque. According to Eq. (6), the viscous torque is determined by the
moment of inertia per unit time Γ = 6ϕη, the macroscopic angular velocity ~ΩP and the fluid vorticity ~Ω. As a result, the
macroscopic angular acceleration for the MNPs obeys the following rotational equation

I
d~Ωp

dt
= ~τmag − ~τvisc, (12)

where I is the total rotation moment of inertia. The model considered here treats the steady state of Eq. (12), which gives
the macroscopic angular velocity for the MNPs

~ΩP = ~Ω +
1

6ϕη

(
~M × ~H

)
. (13)

Thus the magnetization rate of change in the laboratory frame is written by

d ~M

dt
= −1

τ

(
~M − ~M0

)
+ ~Ω× ~M − 1

6ϕη
~M ×

(
~M × ~H

)
. (14)

Note that the dynamics of Eq. (14) agrees very well with numerical results extracted from a Focker-Planck analysis for
the limit Ωτ < 1 (Shliomis (2001)). To apply this model, this paper investigates the heating process of fluid with MNPs
in such limit.

3. The net magnetization and the circular polarization

The heating rate of the system is determined by the magnetization of the ferrofluid due to an alternate magnetic field.
In particular, we choose a circular counterclockwise polarization

~H = H0 cos(ωt)x̂+H0 sin(ωt)ŷ, (15)

where H0 and ω are the amplitude and the angular frequency of the field, respectively. The solution of Eq. (14) for the
magnetization can be obtained numerically. However, we adopt a guessed solution based on the expected behavior of the
magnetization. Before applying this method we remind the role of the relaxation process in the system. In the absence
of a relaxation mechanism, the magnetization is in-phase with the alternating magnetic field, which is described by the
instantaneous version of Eq. (1). Thus, a finite relaxation time introduces a phase shift in the magnetization, i.e.,

~M = M cos (ωt− δ) x̂+M sin (ωt− δ) ŷ. (16)

By defining

χr ≡M cos δ (17)

and

χi ≡M sin δ, (18)

the magnetization can be expressed in terms of the components of the frequency dependent complex susceptibility χ (ω) =
χr − iχi (Rosensweig (2002)),

~M = (χr cosωt+ χi sinωt) x̂+ (χr sinωt− χi cosωt) ŷ. (19)

To determine the unknown variables of Eqs. (17) and (18) as functions of the model properties, we consider the low-
amplitude approximation for the magnetic field |~m|

∣∣∣ ~H∣∣∣ /kBT � 1, which leads to the instantaneous equilibrium mag-
netization

~M0 (t) = χ0
~H (t) , (20)
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with χ0 ≡ (ϕ/V ) |~m|2 /3kBT as the equilibrium susceptibility. By performing the substitutions of Eqs. (15) and (16) in
Eqs. (7) and (13), we show that

M = χ0H0 cos δ (21)

and

tan δ = τ (ω − Ω) . (22)

The combination of these results leads to the complex susceptibility for the system

χ (ω) =
χ0

1 + iτ (ω − Ω)
= χr − iχi, (23)

and the magnetization

~M =
χ0H0√

1 + τ2 (ω − Ω)
2

[cos (ωt− δ) x̂+ sin (ωt− δ) ŷ] (24)

in which the phase shift to the external magnetic field is defined by

δ = arctan

[
−={χ (ω)}
< {χ (ω)}

]
. (25)

4. The heating rate

According to the first law of thermodynamics dE = δQ − δW per unit volume, the dissipation energy E per unit
volume in a cycle T = 2π/ω of the magnetic field for an adiabatic process δQ = 0 is the work per unit volume
δW = − ~H.d ~B done by this field on the ferrofluid. By using the constitutive equation ~B = µ0

(
~H + ~M

)
for the

magnetic induction and the cycle condition
∮
~H.d ~H = 0, we derive for the limit Ωτ < 1, the following dissipation

energy per unit volume is

E = µ0

∫ T

0

dt ~H.
d ~M

dt
= −2πµ0H

2
0={χ (ω)} , (26)

where µ0 is the magnetic permeability of the free space. This function is also called energy density. By taking into account
Eq. (23) in Eq. (26), it becomes

E = 2πµ0χ0H
2
0

τω (1− Ω/ω)

1 + τ2ω2 (1− Ω/ω)
2 . (27)

For flow vorticity satisfying the condition Ω/ω � 1, the expression for the density has the same functional depen-
dence as previous result for a magnetic field with a linear polarization (Rosensweig (2002)), except for a factor of two.
This factor arises from the degrees of freedom of the alternating magnetic field, while the circular polarization has two
components in the xOy plane, the linear case is fixed to only one direction. However, both cases introduce a shift of Ω
in the frequency dependence of the energy density. Thus, our expression allows an enhanced heating process for external
fields that satisfy the condition ω > Ω.

The characterization of the system temperature profile for a constant relaxation can be performed defining the heating
rate function (Rosensweig (2002) and Maenosomo and Saita (2006))

∆T

∆t
=

ωE

2πρc
, (28)

where ∆T is the temperature rise in time step ∆t during the heating process. For the ferrofluid, ρ is the density and c
the specific heat. According to Eq. (26), the heating rate is governed by the behavior of the minus part of the complex
frequency dependent susceptibility given by Eq. (23). So this quantity becomes important to investigate the features of
the heating process as a function of the model parameters.

To make explicit such dependencies, we prefer to define the dimensionless variables ∆ = τ (ω − Ω) and ε = Ωτ to
derive

HC =

(
τρc

µ0χ0H2
0

)
∆T

∆t
=

∆2

1 + ∆2
+ ε

∆

1 + ∆2
(29)
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as the renormalized heating rate due to the circular polarization. Keeping ε < 1 to ensure the validity of the model, Eq.
(29) allows the knowledge of the dependence of the ferrofluid heating rate in terms of the dimensionless relative field
frequency and the flow vorticity given by4 and ε, respectively. According to Rosensweig (2002), the heating rate due to
a linear polarization is the half of a circular,

HL =
1

2
HC . (30)

Figure 2. Heating rate HC due to a circular polarization as a function of the dimensionless relative frequency ∆ =
τ (ω − Ω) with different dimensionless vorticities ε = Ωτ. For external frequencies near the flow vorticity, the heating
rate displays a linear behavior. A crossover region occurs until a saturation value is reached for large relative frequencies.
Constant heating rates dependent on the fluid vorticity appear. A comparison between the linear and the circular heating

for a quiescent fluid (Ω = 0) is presented in the inset. As seen, the circular case is more efficient.

5. Results

In Fig. (2) we present simulations for the heating rate function. They show a linear behavior for small deviations
of the relative frequency 4, i.e., for values of the magnetic field frequency near to the fluid vorticity. For intermediate
deviations, this behavior disappears and the slopes of the curves start to decrease. Such decrease stabilizes and constant
heating rates occurs for large deviations, characterized by an external frequency well above to the fluid vorticity. In
all these regimes, the heating rate function is vorticity dependent. Efficient heating rates for circular polarization are
produced, see the comparison between the circular with linear cases in the inset. Such behaviors are consequence of the
Eqs. (29) and (30). The circular case is the double of the linear one.
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6. Conclusions

Based on a phenomenological model for ferrofluids, we derived the heating rate function due to a magnetic field with
a circular counterclockwise polarization. For a fixed relaxation parameter, we demonstrated that the heating process is
more efficient for large differences between the external and vorticity frequencies with a saturation value determined by
low vorticities. This mechanism can be applied to heat fuel drops with MNPs.
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