

VI CONGRESSO NACIONAL DE ENGENHARIA MECÂNICA VI NATIONAL CONGRESS OF MECHANICAL ENGINEERING 18 a 21 de agosto de 2010 – Campina Grande – Paraíba - Brasil August 18 – 21, 2010 – Campina Grande – Paraíba – Brazil

COMPARAÇÃO DA TENACIDADE À FRATURA ELASTO-PLÁSTICA DINÂMICA DO LAMINADO HÍBRIDO TIGra COM A DA LIGA DE TITÂNIO MONOLITICA DE GRAU AERONÁUTICO TI6AI4V

Maria Cristina Adami Gatti , mcgatti@sc.usp.br Dirceu Spinelli, dspinell@sc.usp.br José Ricardo Tarpani, jrpan@sc.usp.br

Departamento de Engenharia de Materiais, Aeronáutica e Automobilística, Escola de Engenharia de São Carlos, Universidade de São Paulo (SMM-EESC-USP), Avenida Trabalhador São-Carlense, 400, Parque Arnold Schimidt, 13566-590, São Carlos-SP, Brasil

Resumo: A tenacidade à fratura dinâmica Integral-J do laminado híbrido metal-fibra Titânio-Grafite (TiGra) foi comparada à da liga monolítica aeronáutica Ti6Al4V. O TiGra se mostrou mais tenaz à iniciação de danos sob as velocidades de impacto de 2,25m/s e 5,52 m/s, embora no último caso a temperatura tendeu a mitigar esta vantagem sobre a liga-Ti. O TiGra exibiu uma tenacidade à propagação de danos próxima à da liga-Ti na velocidade de impacto de 2,25 m/s, enquanto que, para impactos a 5,52 m/s, a liga Ti6Al4V superou o desempenho do laminado híbrido, especialmente em temperaturas mais altas. O aquecimento dos materiais reduziu significativamente a tenacidade global do TiGra impactado a 2,25 m/s, enquanto um comportamento inverso foi observado para a liga-Ti a 5,52 m/s. O TiGra demonstrou ser invariavelmente o material mais adequado para projetos estruturais mais eficientes (leves) no quesito de tenacidade à fratura dinâmica sob impactos de baixa velocidade até temperaturas de 180°C. A validação dos critérios de tenacidade elasto-plástica J á fratura rápida de ambos os materiais foi possível, a menos do requisito de comprimento mínimo de entalhe/trinca.

Palavras-chave: impacto Charpy instrumentado, laminados compósitos avançados, tenacidade à fratura dinâmica.

1. INTRODUÇÃO

Materiais de uso aeronáutico constituem uma área de constante inovação tecnológica. O aprimoramento dos materiais já existentes, e o desenvolvimento de novos materiais são atividades fundamentais para a evolução desta área da mobilidade.

As ligas de titânio apresentam elevadas temperaturas de fusão, alta dureza a quente, excelentes propriedades mecânicas, alta resistência à corrosão, ótima razão resistência-peso e biocompatibilidade, características que as fazem materiais ideais para aplicações na indústria aeroespacial, automotiva, petroquímica e biomédica (Rahman et al, 2006).

Frente a outros materiais comumente utilizados pela indústria aeroespacial, as ligas de titânio apresentam, em média, resistência mecânica comparável à dos aços, com cerca de metade de sua densidade e resistência mecânica quatro vezes maior que as ligas de alumínio, com densidade apenas 50 % superior. Outras vantagens das ligas de titânio sobre estes materiais relacionam-se à maior resistência à corrosão e menor perda de propriedades em temperaturas de trabalho elevadas (Boyer, 1996). A liga Ti-6Al-4V é a liga mais utilizada na indústria do titânio e é amplamente usada em motores e estruturas aeronáuticas.

Ademais, ligas de titânio são amplamente empregadas em chapas e prendedores formando juntas mecânicas com laminados compósitos convencionais reforçados com fibras contínuas de carbono, devido ao baixo potencial de corrosão galvânica entre as partes (Starikov & Schön, 2001).

Desta forma o titânio puro, ou as ligas de titânio podem ser aplicados na manufatura dos chamados laminados compósitos híbridos, em que lâminas metálicas e de compósito polimérico são alternadamente dispostos e consolidados gerando um material com atrativas propriedades, tais como elevada resistência a impactos, proporcionada pela fase metálica, associada à excepcional resistência à fadiga, fornecida pelas fibras contínuas fortalecedoras da fase orgânica.

Com base neste princípio, a Companhia Aeroespacial Boeing, que juntamente à Agência Aeroespacial Americana (NASA) desenvolveram o projeto HSCT (*High Speed Civil Transport*), concebeu o laminado híbrido metal-fibra (LMF) TiGra, formado por lâminas de liga de titânio (Ti) interpostas alternadamente camadas de compósito de matriz polimérica termoplástica PEEK (poli-éter-éter-cetona) reforçada com fibras de carbono (ou grafite), de modo a satisfazer requisitos para aplicações aeronáuticas em temperaturas de até 180°C, tal como esperadas em fuselagens de aeronaves operando a Mach 2,5 (velocidade da ordem de 2,5 vezes a do som - Burianek, 2002). Merece ser observado

que, nestas circunstâncias, as ligas de alumínio, assim como seu principal derivado LMF, o Glare (Wu, 2005), não se constituem mais numa opção de uso em virtude de perdas substanciais de resistência mecânica.

De qualquer modo, a despeito das notáveis propriedades desta nova classe de materiais estruturais de engenharia aeroespacial, uma das principais limitações inerentes às estruturas laminares ainda permanece, qual seja, a sua relativamente baixa resistência a impactos transversais, o que tem sido objeto de diversos trabalhos com os LMF (Vlot, 1996; Vlot & Krull, 1997; Vlot et al, 1998; Bagnoli et al, 2009; Gualberto et al, 2009).

Ainda com relação a cargas dinâmicas, de impacto, muitíssimos poucos estudos têm sido devotados quanto ao trincamento translaminar destes materiais. É amplamente reconhecido que mudanças bruscas no nível de tensão ou deformação à frente de um defeito tipo-trinca previamente existente em um componente, e.g. como decorrência da aplicação de um choque mecânico mais violento, podem eventualmente induzir ou facilitar sua fratura catastrófica (Owen, 1998; Alves et al, 2003). Este tipo de análise demanda a aplicação dos conceitos da Mecânica da Fratura, que, em geral, encontram boa resposta quanto ao comportamento de materiais monolíticos metálicos sob carregamento lento ou quase-estático. Constitui, portanto, um desafio transladar e adequar, ou adaptar, estes conceitos aos laminados híbridos solicitados sob cargas de impacto, visto que, a rigor, são constituídos pelas três classes básicas de materiais: metais, polímeros e cerâmicas.

Por intermédio dos conceitos da Mecânica da Fratura, através dos parâmetros fator-K de intensidade de tensões da teoria da elasticidade linear (MFEL), ou da taxa de alívio de energia de deformação integral-J da teoria da elastoplasticidade (MFEP), seria então possível inferir o grau de segurança que um componente ou estrutura confeccionado em LMF possui contra a ocorrência de fraturas catastróficas translaminares em serviço (Anderson, 1995).

É de fundamental importância que os critérios de tenacidade à fratura com base nos parâmetros da MFEL e MFEP sejam validados a fim de se garantir que a zona plasticamente deformada à ponta da trinca no material, e que engloba a zona de processos de fratura, deva ser relativamente pequena comparada as dimensões características do corpo-de-prova (cdp). Satisfeita esta condição, que se estabelece em princípio sob predominância de deformação-plana à ponta da trinca, assume-se que o valor de tenacidade obtido constitui uma verdadeira propriedade do material ensaiado, sendo, portanto, passível de emprego em formulações que estabelecem o início, ou a continuidade do crescimento de uma trinca em um componente estrutural (Anderson, 1995).

No presente trabalho, é realizada a comparação, numa base absoluta (por unidade de volume do material) e específica (por unidade de massa), da tenacidade à fratura elasto-plástica dinâmica J (mais apropriada à natureza eminentemente dúctil dos materiais ensaiados) do laminado híbrido metal-fibra Titânio/Grafite (LMF-TiGra) com a liga monolítica aeronáutica Ti6Al4V, num amplo intervalo de temperaturas e sob diferentes taxas de carregamento.

2. MATERIAIS E CORPO-DE-PROVA

2.1. Laminado Híbrido Metal-Fibra TiGra

Placas do laminado híbrido TiGra foram confeccionadas em laboratório na Universidade de Liverpool-UK. O laminado é basicamente constituído por três lâminas de titânio comercialmente puro, cada uma com 0,85 mm de espessura, intercaladas com duas bandas de composto PEEK/Gra, cada qual com aproximadamente 1,10 mm de espessura e constituída por sete lâminas de fibras unidirecionais fortalecedoras de grafite (ocupando nominalmente 60% em volume do composto) impregnadas com o polímero termoplástico, estas últimas com cerca de 0,14 mm de espessura cada, perfazendo assim um laminado metal-fibra com espessura total próxima de 5 mm. De acordo com a nomenclatura codificada e amplamente estabelecida para os LMF, o TiGra obedece o arranjo 3/2(0°)₇. A consolidação do produto final foi realizada por compressão a quente em molde fechado, seguida por resfriamento controlado. Fibras de grafite e lâminas de titânio foram dispostas em uma única orientação (0°), de forma a que, como a ser visto na seqüência, o entalhe se posicionasse perpendicularmente à direção de máxima resistência mecânica do TiGra. A microestrutura do híbrido TiGra é ilustrada na Figura 01.

Figura 01. Microestrutura do laminado híbrido TiGra: (a) Vista em corte da seção longitudinal; (b) Detalhe da interface metal/compósito.

2.2. Liga Monolítica Aeronáutica Ti6Al4V

Os experimentos foram realizados com uma liga aeronáutica Ti6Al4V, fornecida pela Embraer S/A na forma de placa laminada com 12,5 mm de espessura, tratada para a condição recozida conforme norma SAE-AMS 4911 (2002). A microestrutura da liga Ti6Al4V em uma vista tri-dimensional é mostrada na Figura 02.

Figura 02. Microestrutura 3-D da liga monolítica Ti6Al4V.

2.3. Corpos-de-Prova

Os espécimes de TiGra foram extraídos das placas originais por corte com jato d'água, enquanto que, no caso da liga monolítica Ti6Al4V, os cdps foram providos pela Embraer S/A já nas suas dimensões finais.

Os cdps ensaiados de TiGra (Figure 03) possuíam as dimensões nominais de 5x10x55mm³, enquanto que, no caso da liga Ti6Al4V, e espessura do espécime era de 10 mm, sendo as outras dimensões idênticas às do TiGra. O entalhamento dos cdps do laminado híbrido foi realizado com um disco diamantado, com espessura de 0,5 mm, sob baixa velocidade de rotação e empregando-se refrigeração aquosa. No caso da liga monolítica, o entalhamento convencional com ferramenta com ponta em ângulo de 45° e raio de curvatura de 0,25 mm foi seguido pelo pré-trincamento das amostras. O posicionamento do entalhe foi de tal modo a provocar a fratura translaminar no laminado híbrido, conforme destaca a Figura 3, e na liga Ti6Al4V a orientação adotada foi a L-T, conforme nomenclatura já tradicionalmente estabelecida pela norma ASTM-E399 (1995).

Figura 03. Geometria do cdps de impacto Charpy do TiGra, planejada de acordo com a norma ASTM D5045-96 (2001). Todas as dimensões são fornecidas em mm.

A Tabela 1 lista as densidades dos materiais ensaiados, visando a conversão de propriedades de tenacidade ao impacto por unidade de volume em tenacidade específica por unidade de massa.

Tabela 1	1. I	Densidade	dos	materiais	ensaiad	los.
----------	------	-----------	-----	-----------	---------	------

Material	Densidade específica (relativa á água)
TiGra	3,09
Ti6Al4V	4,54

3. EXPERIMENTAL

3.1. Ensaio de Impacto Charpy Instrumentado

Os ensaios de impacto Charpy instrumentado foram realizados em um sistema Instron-Wolpert[®] PW30 com fundo de escala máximo de 300 Joules, integrado a um microcomputador que opera com programas computacionais

desenvolvidos pela Instron[®] e National Instruments[®], os quais são destinados à leitura e tratamento dos dados para interpretação dos resultados finais.

O sistema de impacto abrange a instrumentação do martelo por meio de extensômetros que registram o sinal de carga (P) em um osciloscópio, possibilitando a visualização da variação da carga com o tempo (t). O deslocamento, ou deflexão do espécime na linha de aplicação da carga (s), é monitorado por meio de um dispositivo baseado em raios infravermelhos (i.e., transdutor óptico).

Os gráficos P-t e P-s fornecem informações precisas sobre a carga de escoamento, carga máxima, início e freamento de trinca instável, dentre outros parâmetros.

As oscilações originais dos sinais de carga foram filtradas para sua eliminação, ou minimização, por intermédio de uma rotina Matlab[®], via método da Média Móvel.

Empregou-se um forno resistivo para o aquecimento dos espécimes para os ensaios de impacto em temperaturas acima da ambiente, e utilizaram-se misturas de nitrogênio líquido e etanol para a refrigeração dos cdps nos ensaios conduzidos em condições sub-zero.

3.2. Determinação do Ponto de Iniciação do Trincamento

Kobayashi (1984) e Kobayashi, et al (1993), trabalhando no regime elasto-plástico, desenvolveram o método da taxa de variação da flexibilidade elástica – TVFE do cdp para a determinação do ponto de iniciação de trincamento dúctil sob impacto Charpy, tendo em vista as inerentes dificuldades de se monitorarem os eventos de início e crescimento de trincas sob relativamente elevadas taxas de carregamento. A expressão básica que fundamenta o método é dada por:

$$\frac{\Delta C}{C} = \frac{C - C_{el}}{C_{el}} \tag{1}$$

onde: $\Delta C/C$ = taxa de mudança da flexibilidade elástica do cdp

C = secante da flexibilidade (mm/N)

 C_{el} = flexibilidade elástica (mm/N)

O método consiste em se registrar a carga e o deslocamento, ou deflexão, aplicados ao espécime e determinar o ponto em que ocorre uma súbita alteração da TVFE do cdp, que presumivelmente indica o ponto onde se inicia a propagação da trinca. O princípio que rege esta metodologia é estabelecido com base nas seguintes etapas de deformação do cdp, ilustradas detalhadamente na Figura 04.

I. Estágio de deformação elástica: onde a flexibilidade elástica é praticamente constante, e a sua taxa de variação é obviamente nula, ou seja, $\Delta C/C = 0$;

II. Estágio de deformação plástica: quando $\Delta C/C$ aumenta de modo constante, e a sua taxa de crescimento depende, no caso dos metais, do expoente de encruamento do material;

III. Iniciado o crescimento da trinca e danos associados, há um aumento brusco na TVFE, $\Delta C/C$, quando se observa a diminuição da área resistente (ligamento) do cdp.

Figura 04. Método da taxa de variação da flexibilidade elástica - TVFE (Kobayashi, 1984).

3.3. Cálculo da Tenacidade à Fratura Dinâmica na Iniciação de Trincamento (Critério J_{id})

Na determinação da tenacidade à fratura elasto-plástica sob carregamento dinâmico, J_{id} , a maioria dos pesquisadores (ex., Zhang & Shi, 1996) utiliza a expressão originalmente elaborada por Rice (1973) para um regime de carregamento lento, ou quase-estático, empregando-se como referência o ponto de iniciação do trincamento estabelecido no item 3.2. A expressão de J_{id} proposta pelos pesquisadores, e posteriormente corrigida para trincas rasas (Tronskar, 2002; Jian et al., 2003), é dada por:

$$J_{id} = 1.46 E_i / B (W - a) \tag{2}$$

onde E_i é a energia absorvida pelo cdp até o início de seu verdadeiro trincamento, B é a espessura do espécime, W a sua largura, a a profundidade do entalhe no laminado híbrido, ou da pré-trinca na liga monolítico, e b = W - a é o correspondente ligamento original do cdp, ou seja, o comprimento da seção transversal íntegra do cdp, localizada à frente do entalhe.

3.4. Cálculo da Tenacidade à Fratura Dinâmica na Carga Máxima (Critério J_{md})

Zhang & Shi (1996) propuseram uma simplificação do cálculo de da tenacidade à fratura dinâmica dos materiais, assumindo que a trinca inicia seu crescimento na carga máxima suportada pelo cdp. Isto deu origem ao critério J_{md} , determinado a partir da Eq.2, porém utilizando-se o valor de energia de carga máxima (E_m).

3.5. Validação dos Valores de da Tenacidade

Para se determinar a validade, ou não, dos resultados de tenacidade à fratura Integral-J, de forma a que esta possa ser considerada, ou não, uma propriedade intrínseca do material, empregam-se os chamados requisitos de validade (no presente caso eles são fornecidos em unidades de milímetros) já bem estabelecidos na literatura (ASTM-E1820, 2005), tendo-se como base as dimensões do cdp. De modo resumido, são estes os requisitos, aplicados indistintamente às tenacidade elasto-plásticas J_{id} e J_{md} :

$$a, B, W, b \ge 25 \left(J_{i(m)d} / \sigma_{ed} \right) \tag{3}$$

onde σ_{ed} é o limite de escoamento dinâmico do material (Server, 1978), definido por:

$$\sigma_{ed} = 2,85 \ P_{ed} \ W/(B.b^2) \tag{4}$$

onde P_{ed} é a carga de escoamento dinâmico correspondente.

No presente trabalho, todos os procedimentos analíticos e matemáticos acima descritos, os quais foram originalmente desenvolvidos para ligas metálicas monolíticas, foram empregados na caracterização mecânica sob impacto do laminado TiGra e da liga Ti6Al4V. Um programa computacional incluindo as formulações providas nas Eqs (1) a (4) foi especificamente elaborado para a tarefa, utilizando-se ferramentas Matlab[®], possibilitando assim o polimento das curvas P-s originais, e a imediata geração e validação (ou não) dos resultados de tenacidade *J* de iniciação de trincamento, J_{id} , e de carga máxima, J_{md} .

4. RESULTADOS

4.1. Tenacidades Absolutas J_{id} e J_{md}

A Figura 05 apresenta os gráficos de tenacidade absoluta (por unidade de volume dos materiais) considerando respectivamente os critérios J_{id} e J_{md} nas várias temperaturas de ensaio e sob as duas taxas de carregamento aplicadas aos espécimes.

Figura 05. Resultados de tenacidade absoluta (por unidade de volume dos materiais avaliados) para as diversas temperaturas de ensaio e velocidades de impacto: (a) J_{id} ; (b) J_{md} . As linhas tracejadas indicam apenas a tendência dos pontos de dados, não devendo ser empregadas para fins de interpolação nem extrapolação.

Os valores plotados correspondem à média dos pontos de dados coletados para cada uma das condições de ensaio, com os respectivos desvios-padrão sendo fornecidos na forma de barras verticais.

Observa-se na Figura 5a que o laminado TiGra apresenta um valor de tenacidade à fratura J_{id} superior ao da liga de titânio na taxa de carregamento de 2,25m/s. Esta boa tenacidade de iniciação do laminado híbrido frente ao seu concorrente monolítico se deve em boa parte ao relativamente grande número de interfaces passíveis de delaminação da estrutura híbrida-compósita (18 interfaces), visto que a delaminação constitui um poderoso mecanismo de tenacificação nas estruturas laminadas. Note que a hipótese acima implica necessariamente na iniciação simultânea das fraturas trans-e interlaminar (i.e., delaminações) no laminado híbrido, de sorte que, a rigor, J_{id} seria um critério de disparo de múltiplos trincamentos para esta classe de material. Sob a taxa de carregamento de 5,52 m/s, a superioridade do TiGra sobre a liga Ti6Al4V é ainda muito mais pronunciada, indicando o favorecimento desta variável de ensaio para o desempenho dinâmico da estrutura laminar; entretanto, o aumento da temperatura tende a reduzir esta vantagem do TiGra sobre a liga-Ti, o que é compreensível em face da existência de um polímero na composição do primeiro.

Verifica-se na Figura 5b que o laminado TiGra apresenta um valor de J_{md} similar ao da liga-Ti na velocidade de impacto de 2,25 m/s. Porém, para impactos a 5,52 m/s, diferentemente do que foi observado anteriormente para o critério J_{id} , agora é a liga Ti6Al4V quem exibe melhor desempenho em termos de J_{md} , o qual tende cada vez mais a se distanciar do TiGra com o incremento da temperatura de ensaio. De fato, o parâmetro J_{md} já incorpora em si uma boa parcela de energia associada ao estágio de propagação da fratura em ambos os materiais, respectivamente laminado híbrido e monolítico metálico, indicando que a liga de titânio possa exibir uma resistência maior ao crescimento de danos que o TiGra. Visto que não há resultados para a liga-Ti na temperatura intermediária de 180° (que foi a máxima empregada no caso do ensaio do TiGra), é possível que a interpolação de dados executada para a liga metálica possa ter mascarado (de fato, superdimensionado) a tenacidade J_{md} do material no intervalo de 25 a 400°C. Desta forma, a confirmação, ou não, da hipótese de superioridade da liga monolítica sobre o TiGra a 180°C demandaria necessariamente a condução de ensaios complementares naquela temperatura.

Para uma velocidade de impacto de 2,25 m/s, a Figura 05 mostra que um aumento na temperatura de ensaio causa um significativo decréscimo em ambas as tenacidades J_{id} e J_{md} do laminado TiGra, indicando um enfraquecimento do mecanismo de tenacificação deste material durante o seu aquecimento. Conforme demonstrado pelos autores em trabalhos anteriores, este mecanismo é exatamente o de delaminação, que sofre restrições em temperaturas mais elevadas (Tarpani & Gatti, 2010a).

Nos impactos a 5,52 m/s, o laminado TiGra (J_{id} e J_{md}) e a liga de titânio (J_{id}) podem ser considerados, em termos estatísticos, interpretados à luz das barras de verticais de desvios-padrão, como relativamente pouco sensíveis à variação da temperatura. Por outro lado, e conforme anteriormente já destacado, sob carregamento mais lento, a 2,25 m/s, a dependência dos critérios J_{id} e J_{md} do TiGra para com a temperatura de ensaio é robusta, e o aquecimento tem efeito bastante negativo naquelas propriedades. Já para a liga-Ti, um efeito benéfico da temperatura no critério J_{md} é notável sob impacto a 5,52 m/s.

O efeito positivo em geral observado nas tenacidades J_{id} e J_{md} do TiGra devido ao aumento da taxa de carregamento é típico dos materiais de natureza dúctil, cujo processo de fratura é controlado por deformação. Interessante que, no caso da liga-Ti à temperatura ambiente, praticamente não se observou tal efeito esperado.

4.2. Tenacidades Específicas J_{id} e J_{md}

A Figura 06 apresenta os gráficos de tenacidade relativa (por unidade de massa dos materiais) considerando respectivamente os critérios J_{id} e J_{md} nas várias temperaturas de ensaio e sob as duas taxas de carregamento aplicadas aos espécimes.

Os valores plotados correspondem à média dos pontos de dados coletados para cada uma das condições de ensaio, com os respectivos desvios-padrão sendo fornecidos na forma de barras verticais.

Figura 06. Resultados de tenacidade relativa ou específica (por unidade de massa dos materiais avaliados) para as diversas temperaturas de ensaio e velocidades de impacto: (a) J_{id} ; (b) J_{md} . As linhas tracejadas indicam apenas a tendência dos pontos de dados, não devendo ser empregadas para fins de interpolação nem extrapolação.

A partir da análise do gráfico da Figura 6a pode-se concluir que o laminado TiGra apresenta valores específicos J_{id} substancialmente superiores aos da liga-Ti, indicando maior eficiência estrutural do material híbrido sobre o monolítico neste quesito de caracterização mecânica (porventura um critério de seleção de materiais, ou mesmo de projeto estrutural). No caso da tenacidade específica J_{md} (Figura 6b), embora com menor intensidade, a superioridade do TiGra perante a liga Ti6Al4V se manifesta de forma clara e inequívoca, indicando que, para temperaturas de até 180°C, projetos estruturais mais eficientes (i.e., mais leves para uma mesma garantia de aeronavegabilidade, no caso da industria de construção aeronáutica) quanto à resistência à fratura translaminar dinâmica sob cargas de baixa velocidade (típicos de eventos de choque entre aeronaves no solo, destas com veículos de apoio na pista, e de choque de cauda contra a pista – Tarpani & Gatti, 2010b) podem ser obtidos por intermédio do uso do laminado híbrido.

4.3 Validação dos Resultados de Tenacidade J

A Figura 07 apresenta os resultados de verificação de validação das tenacidades à fratura J_{id} e J_{md} para os dois materiais estudados sob as diversas temperaturas e velocidades de impacto aplicadas.

Figura 07. Requisitos de validade das tenacidades elasto-plásticas J para as diversas temperaturas de ensaio e velocidades de impacto: (a) J_{id} ; (b) J_{md} . As linhas tracejadas indicam apenas a tendência dos pontos de dados, não devendo ser empregadas para fins de interpolação nem extrapolação.

Para o critério J_{id} (Figura 07a), nota-se que, à exceção do comprimento de trinca ou entalhe (a = 2 mm), o laminado TiGra e a liga de titânio satisfazem, em maior ou menor extensão, todos os requisitos estabelecidos em termos de dimensões mínimas necessárias do cdp para o desenvolvimento de uma condição de deformação predominantemente plana à frente da trinca/entalhe. Desta forma, a espessura (B = 5 mm para o TiGra, e 10 mm para a liga Ti6Al4V), o ligamento (b = W - a = 8 mm) e a largura do cdp (W = 10 mm) são suficientemente extensos, e, por conseguinte, os cdps suficientemente robustos, para garantir J_{id} como uma verdadeira propriedade dos materiais. Nestas circunstâncias, J_{id} passa a assumir a denominação J_{Id} .

Para o critério J_{md} (Figura 07b), tal como esperado, os valores J, por embutirem certa parcela do estágio de crescimento de danos e, conseqüentemente, estarem associados a uma zona de processos fratura mais ampla se comparada àquela vinculada ao correspondente critério J_{id} , tendem a violar em maior freqüência e extensão os requisitos de validação impostos em termos de dimensões dos espécimes Charpy ensaiados. Entretanto, mesmo assim, somente um ponto de dados não obedece todos os requisitos estabelecidos.

5. CONCLUSÕES

Neste estudo, a tenacidade à fratura translaminar dinâmica do laminado híbrido metal-fibra Titânio-Grafite (TiGra) foi comparada, por intermédio do parâmetro elasto-plástico Integral-J, à de liga monolítica aeronáutica Ti6Al4V. De modo resumindo, as principais conclusões extraídas do trabalho são as seguintes:

5.1. Tenacidades Absolutas J_{id} e J_{md}

- 1. O laminado TiGra é mais tenaz à iniciação de danos (*J_{id}*) que a liga-Ti sob a velocidade de impacto de 2,25m/s, muito provavelmente devido a efeitos de delaminação, que constitui um poderoso mecanismo de tenacificação desta classe de materiais;
- Em impactos a 5,52 m/s, a superioridade do TiGra em termos de J_{id} é ainda muito mais pronunciada, embora a temperatura tenda a mitigar esta vantagem do laminado híbrido sobre a liga-Ti, provavelmente em decorrência da presença do polímero em sua composição;
- 3. O TiGra exibe uma tenacidade ao crescimento de danos (J_{md}) próxima à da liga-Ti na velocidade de impacto de 2,25 m/s, enquanto que para impactos a 5,52 m/s a liga Ti6Al4V supera o desempenho do laminado híbrido, especialmente para temperaturas mais elevadas;

- 4. Em impactos a 2,25 m/s, o aumento da temperatura reduz significativamente as tenacidades J_{id} e J_{md} do TiGra, por intermédio da restrição à ocorrência de delaminação;
- 5. À velocidade de 5,52 m/s, o laminado TiGra (critérios J_{id} e J_{md}) e a liga de titânio (J_{id}) são muito pouco sensíveis à variação da temperatura, enquanto que, para a liga-Ti, o aquecimento incrementa J_{md} de modo notável.

5.2. Tenacidades Específicas J_{id} e J_{md}

- 1. O TiGra exibe valores específicos de J_{id} muito acima daqueles obtidos para a liga-Ti, lhe conferindo o *status* de material com maior eficiência estrutural dentre os concorrentes avaliados;
- 2. Para a tenacidade específica J_{md} , a superioridade do TiGra sobre a liga Ti6Al4V ainda se estabelece de forma clara e inequívoca, denotando o potencial que o laminado hibrido possui para projetos estruturais mais eficientes (leves) no quesito de resistência à fratura translaminar dinâmica por impacto de baixa velocidade até temperaturas de 180°C.

5.3 Validação das Tenacidades J

- 1. O critério J_{id} foi validado como verdadeira propriedade dos materiais híbrido e metálico (sendo assim designado por J_{Id}) respectivamente, a menos do requisito de comprimento de entalhe ou entalhe;
- 2. O critério J_{md} tendeu a violar em maior freqüência e extensão os requisitos de validade impostos em termos de dimensões dos espécimes ensaiados, embora somente um ponto de dados da liga-Ti não tenha obedecido a todos os requisitos de validade previamente estabelecidos.

6. AGRADECIMENTOS

À Capes, à Embraer S/A e ao Prof. Wesley James Cantwell da Universidade de Liverpool (UK).

7. REFERÊNCIAS

- Alves, M., Chaves, C. and Birch, R.S., 2003, "Impact on aircraft", In: Congresso Brasileiro de Engenharia Mecânica, 2003, São Paulo.
- Anderson, T.L., Fracture mechanics fundamentals and applications, Chapter 8: Fracture testing of nonmetals. CRC Press, Boca Raton FL.
- ASTM D5045-96, Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials, 2001
- ASTM E399-97, Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, 2005.

ASTM E1820-97, Standard test method for measurement of fracture toughness, 1997.

- Bagnoli, F., Bernabei, M., Figueroa-Gordon, D. and Irving, P.E., 2009, "The response of aluminium/Glare hybrid materials o impact and to in-plane fatigue", Materials Science & Engineering A, v.523, p.118-124.
- Boyer, R.R., 1996, "An overview on the use of titanium in the aerospace industry", Materials Science & Engineering A, v.213, p.103-114.
- Burianek, D.A. and Spearing, S.M., 2002, "Fatigue damage in titanium-graphite hybrid laminates". Composite Science & Technology, v.62, n.5, p.607-617.
- Gualberto, A.R.M., Gatti, M.C.A., and Tarpani, J.R., 2009, "Resistência e tolerância a impacto transversal de baixa energia de um laminado híbrido metal/fibra", Matéria, v.14, p.795-813.
- Jian, F., Fulian, D. and Chengzhng, W., 2003, "Experimental study on the material dynamic fracture properties by instrumented Charpy", Journal of Physics IV France, v.110, p.123-129.
- Kobayashi, T., 1984, "Analysis of impact properties of A533 steel for nuclear reactor pressure vessel", Engineering Fracture Mechanics, v.19, p.49-65.
- Kobayashi, T., Yamamoto, I. and Niinomi, M., 1993, "Introduction of a new dynamic fracture toughness evaluation system". Journal of Testing & Evaluation, v.21, p.145-153.
- Owen, D.M., Zhuang, S., Rosakis, A.J. and Ravichandran, G., 1998, "Experimental determination of dynamic crack initiation and propagation fracture", International Journal of Fracture, v.45, p.1-15.
- Rahman, M., Wang, Z.G. and Wong, Y.S., 2006, "A review on high-speed machining of titanium alloys", JSME International Journal, v.49, p. 11-20.
- Rice, J.R., 1973, "Some further results on J-integral analyses and estimates", ASTM STP (Special Technical Publication) 536, p.231-263.
- SAE-AMS 4911-2002, Titanium Alloy, Sheet, Strip, and Plate 6AI 4V Annealed, 2002.
- Server, W.L., 1978, "Impact three-point bend testing for notched and precracked specimens", Journal of Testing and Evaluation, v.12, p.29-34.
- Starikov, R. and Schön, J., 2001, "Quasi-static behaviour of composite joist with countersunk composite and metal fasteners", Composites: Part B, v.32, p.401-411.
- Tarpani, J.R., Gatti, M.C.A., 2010a, "Tenacidade à fratura translaminar dinâmica de laminados compósitos carbonoepóxi de grau aeronáutico". Submetido a Polímeros - Ciência & Tecnologia em Fevereiro de 2010.

- ^bTarpani, J.R., Gatti, M.C.A., 2010b, "Tenacidade à fratura translaminar dinâmica de um laminado híbrido metal-fibra para uso em elevadas temperaturas". Submetido a Polímeros Ciência & Tecnologia em Março de 2010.
- Tronskar, J.P., Mannan, M.A. and Lai, M.O., 2002, "Measurement of fracture initiation toughness and crack resistance", Engineering Fracture Mechanics, v.69, p.321-338.
- Vlot, A., 1996, "Impact loading on fiber metal laminates", International Journal of Impact Engineering, v.18, p.291-307.
- Vlot, A. and Krull, M., 1997, "Impact damage resistance of various fibre metal laminates", Journal of Physics IV France, v.C3, p.1045-1050.
- Vlot, A., Kroon, E. and La Rocca, G., 1998, "Impact response of fiber metal laminates", Key Engineering Materials, v.141-143, p.235-276.
- Wu, G., 2005, "The mechanical behavior of Glare laminates for aircraft structures", Journal of Materials, v.57, p.72-79.
- Zhang, X.P. and Shi, Y.W., 1996, "Comparative studies of several methods to determine the dynamic fracture", International Journal of Fracture, v.81, p.195-204.

8. DIREITOS AUTORAIS

Os autores são os únicos responsáveis pelo conteúdo do material impresso incluído neste trabalho.

VI CONGRESSO NACIONAL DE ENGENHARIA MECÂNICA VI NATIONAL CONGRESS OF MECHANICAL ENGINEERING 18 a 21 de agosto de 2010 – Campina Grande – Paraíba - Brasil August 18 – 21, 2010 – Campina Grande – Paraíba – Brazil

COMPARING THE ELASTIC-PLASTIC DYNAMIC FRACTURE TOUGHNESS OF TIGR HYBRID FIBER-METAL LAMINATE AND AIRCRAFT GRADE MONOLITHIC TITANIUM ALLOY TI6AI4V

Maria Cristina Adami Gatti , mcgatti@sc.usp.br Dirceu Spinelli, dspinell@sc.usp.br José Ricardo Tarpani, jrpan@sc.usp.br

Departament of Materiais, Aeronautics and Automotive Engineering, Engineering School of São Carlos, University of São Paulo (SMM-EESC-USP), Avenida Trabalhador São-Carlense, 400, Parque Arnold Schimidt, 13566-590, São Carlos-SP, Brazil

Abstract: The elastic-plastic J-integral dynamic fracture toughness of Titanium-Graphite (TiGr) hybrid fiber-metal laminate has been compared to monolithic titanium alloy Ti6Al4V utilized in the aircraft construction industry. TiGr laminate was tougher in regard to damage initiation under impact speeds of 2.25m/s and 5.52 m/s, although in the later condition the temperature trended to mitigate the TiGr advantage over Ti-alloy. TiGr laminate was as tough as Ti-alloy in terms of damage propagation under impact at 2.25 m/s, whereas for impact at 5.52 m/s the monolithic metal alloy exceeded the laminate performance especially at the high temperature range. Material heating significantly impaired the global toughness of TiGr at 2.25 m/s, whereas it imparted the Ti-alloy performance at 5.52 m/s. TiGr hybrid laminate was invariably the best choice for more efficient (i.e., lighter) structural design relying on dynamic fracture toughness under low-velocity impact up to temperatures of 180°C. The validation of fast elastic-plastic J fracture criteria for both the materials was achieved except for the requirement of minimum notch/crack length.

Keywords: advanced composite laminates, dynamic fracture toughness, instrumented Charpy impact testing.