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Abstract: Attitude Control System (ACS) for flexible satellites demands great reliability, autonomy and robustness, besides 
these flexible structures face low stiffness due to minimal mass weight requirements. Satellite ACS design based only on 
computer simulations without experimental verification can be instable and/or inefficient. Controller implementation can 
also be jeopardized by its dimension and complexity, parameters and model uncertainties. In that context, comparison and 
validation of new control techniques through simulation and/or prototypes is the way to increase control system 
confidence. Experimental set up also allows verifying a variety of control techniques dealing with stabilization, 
identification, attitude control and robustness in order to improve ACS performance. In this paper one investigates the 
robustness and performance of two different multivariable methodologies to design the ACS for a rigid-flexible satellite. 
The first one is the traditional time domain LQR (Linear Quadratic Regulator) approach and the second one is the 
frequency domain H-Infinity approach. Although these control techniques have their particular characteristics, this 
investigation try to highlight the advantages and benefits of each technique  for the control algorithm implementation. The 
satellite ACS design is performed by computer simulation environment, using Quanser rotary flexible link model. This 
preliminary investigation has shown that the LQR method has good performance and robust properties only if all the states 
are available. On the other hand, the H-infinity loop-shaping method is time consuming, since it depends on finding all the 
relative weights to achieve the desired performance and robustness. For both methods a small parameters variation can 
change all the system response. Besides, even to this simple problem the desired loop-shape is strongly affected by the 
choice of the weight matrix, once the design involves conflicting restrictions. As for the control algorithm implementation 
in the satellite onboard computer, the LQR has some advantages over the H-infinity, since the fist controller is simpler and 
has small dimension than the second one. The next step of this investigation is the physical implementation of the designed 
controllers in the Quanser flexible link equipments, in order to verify the controllers' feasibility and experimental 
comparison of the methods. 
 
Keywords: Satellite attitude control; Flexible structure 

 
 
1. Introduction 
 

Recently many researches and applications like modeling and robust control in Popescu et al (2008), vision based 
control in Xu et al (2009), time-optimal trajectory control in Chen et al (2008), position control in Boomsma et al (2004), 
control of robotic arm using sliding modes in Etxebarria et al (2005), space large structures robust control in Bodineau 
(2004), optimal vibration control in Sethi et al (2005), vibration suppression in Ahmad et al in Ahmad et al (2008), flexible 
structures control in Barbosa et al (2008), have been made using Quanser equipments to study and simulate a wide variety 
of real problems in different areas.  

Position control of system with vibration has always received considerable attention from researchers due it great 
importance on performance of structures and equipments. In satellite launching and its space operation this importance is 
bigger due regarding low energy consumption operation and repair if there is any fault of the equipment. So it is necessary 
to eliminate or reduce rapidly any vibration after any correction maneuver with minimum energy consumption.  

In this work we consider the angle position control and consequently the remaining vibration  control  (to  damp  the  
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vibrations) of a flexible beam coupled to a rigid hub of servo system, namely the SRV02-Series equipped with a rotary 
flexible link supplied by Quanser. Our objective is to compare the angle position control performance between two robust 
control techniques, the classical LQR control and H infinity control, for such a system. 

  
2. Mathematical Model 

 
The mathematical model describes the rotation dynamics and the tip deflection. Using a strain gage we obtain the 

measurement of the flexible arm deflection. The motion equations consist of modeling the flexible link and the rotational 
base as rigid bodies. Table 1 depicts a list of the variables used to derive the state-space equations (equations (2.1)) of the 
system according to the SRV02-Series Quanser manual. 

 
Table 1: System variables 

 
Symbol Description 

L Length of flexible Link 
m Mass of flexible Link 
K_Gage Strain Gage Calibration factor (1 Volt/Inch) 
θ Servo load gear angle (radians) 
α Arm Deflection (radians) 
D Link End-point Deflection (Arc Length) 
ω  Link´s Damped Natural Frequency (Experimentally Calculated) 
J  Modeled Link Moment of Inertia 
Kstiff  Modeled Stiffness (Estimation) 
J  Equivalent Inertia 
η   Motor Efficiency 
η   Gear Efficiency 
K   Motor Voltage Constant 
K   High Gear Ratio 
B   Equivalent Viscous Friction (Referred to the secondary gear) 
R   Armature Resistance 
JA   Link´s Moment of Inertia 
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3. Robust Controllers 
 
3.1. Linear Quadratic Regulator (LQR):   
 

The Linear Quadratic Regulator problem is to find the control input u(t) in  
 
x t Ax t Bu t                                   (2) 
 
with  x t x  so as to minimize the quadratic cost criterion (performance index) 
 
J x′ t Qx t u′ t Ru t dt∞                    (3) 
 
where Q 0 e R 0 are given matrices. Without loss of generality, the matrix Q can be expressed as 
 
Q M′M                      (4) 
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The solution of the LQR problem is given by  
 
u t R B′Px t K x t                    (5) 
 
Where P is an n n symmetric matrix which is the unique positive semidefinite solution of the algebraic Riccati 

equation 
 
A′P PA PBR B′P Q 0                   (6) 
 
It can be shown that the unique P 0 satisfying the algebraic Riccati equation, exists under the assumptions A, B  

stabilizable and M,B  detectable. 
Furthermore the matrix A BR B′P i.e. A BK  is a stable matrix. 
In LQR Control, a disadvantage is that all the states have to be known. However, it is well known that a LQR-controlled 

system has the robustness property as advantage, if one chooses the weight R to be diagonal, the system will have a gain 
margin equal to infinity, a gain reduction margin equal to 0.5, and a (minimum) phase margin of 60o in each plant input 
control channel. The drawback of this method is that if at the input and output of the plant we have complex transfer 
functions, in general it gives no guarantees of satisfactory robustness properties (stability margins). 

 
3.2. H-Infinity ∞ : 

 
Consider the system (Fig. (1)): 
 

 
 
 
 
 
 
 

Figure 1: General control configuration 
 

described by 
 

e
v P s w

u
P s P s
P s P s

w
u                                 (7) 

 
with  the state realization of the generalized plant P given by 
 

P
A B B
C
C

D D
D D

                     (8) 

 
where: u are the control variables, v are the measured variables, w are the exogenous signals as disturbances wd and the 

commands r, and e are the error signals which are to be minimized to meet the control objectives. The closed-loop transfer 
function from w to e is given by the linear fractional transformation 

 
e F P, K w                     (9) 
 
where 
 
F P, K P P K I P K P                               (10) 
 
Assuming that: 
(A, B2, C2) is stabilizable and detectable. 
D12 and D21 have full rank. 
A jωI B
C D  has full column rank for all ω. 

P

K 

w

u

e

v
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A jωI B
C D  has full row rank for all ω. 

D 0 and D 0. 
D 0

I  and D 0 I . 
D C 0 and B D 0. 
(A, B1) is stabilizable and (A, C1) is detectable. 
The H∞ optimal control problem is to find all stabilizing controllers K which minimize 
 
F P, K ∞ max σ F P, K jω                               (11) 

 
It also has a time domain interpretation as the induced two norm: Let F P, K ω . Then 
 
F P, K ∞ max                  (12) 

 

Where z t ∑ |z t | dt∞  is the 2-norm of the vector signal. 

It is usually not necessary to obtain an optimal controller for the H∞ problem. Let γ  be the minimum value of 
F P, K ∞ over all stabilizing controllers K, them one has a sub-optimal control  

 
F P, K ∞ γ                   (13) 

 
where  γ γ  . 
 

3.3. Mixed-sensitivity ∞ control: 
 
Mixed-sensitivity is the name given to a transfer function shaping problem in which the sensitivity function S

I GK  is shaped along with one or more other closed-loop transfer functions such as KS or the complementary 
sensitivity function T I S . 

 
3.4. ∞ Loop-shaping design: 

 
The loop-shaping design used in this paper follows the design procedure presented in Skogestad et al (2005) which is 

based on robust H∞ stabilization combined whit classical loop-shaping, where de open-loop plant is augmented by pre and 
post-compensators to give a desired shape to the singular values of the open-loop frequency response. Then the resulting 
shaped plant is robustly stabilized using H∞ optimization. 
 
4. Simulations and Results  
 
4.1. LQR Controller Design: 
 

The estimated state-space matrices are: 
 

A
0
0

          0         
 0

1
0

                      0
                      1

0
0

591.9697
947.2755

31.9744
31.9744

               0
               0          

,   B
0
0

56.2361
56.2361

, C 1 0 0 0 ,   D 0 .           14  

 
The LQR controller is designed to give the best performance. The R and Q matrices elements are chosen to allow a 

relative weighting of individual control inputs and individual state variables respectively. Starting with matrices Q and R as 
follows, 

 

      Q  
1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

   ,   R 1                  (15) 
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we change the values of the main diagonal of matrix Q to achieve, or get as close as possible to, the desired performance 
characteristics for the controlled system. Increasing equally the values of the main diagonal of matrix Q we do not have a 
good performance improvement for the controlled system. 
 

 
 
 

Figure 2: a) Step response of the LQR-controlled system for small values of matrix Q = diag [1 1 1 1]b) Step response 
of the LQR-controlled system for high values of matrix Q = diag [1000 1000 1000 1000]. 

 
Indeed if we consider assigning different values for each element of the main diagonal of matrix Q giving emphasis to 

the relative weight of each corresponding control variable (Fig. (3)), it is possible to achieve satisfactory performance 
characteristics by the combination of its different weights.  

This implies that we need to give more emphasis (increase) to the relative weight of the first state variable θ  and 
second state variable α  once we need to control them simultaneously to reach the desired final link position. In Fig. (4) a) 
is presented the (over-damped) step response for the LQR-controlled system for the Q matrix weights  

         

 
 

Figure 3: Step response of the LQR-controlled system for: a) Q = diag [10 1 1 1]; b) Q = diag [1000 1 1 1]; c) Q = diag 
[1 10 1 1]; d) Q = diag [1 1000 1 1]; e) Q = diag [1 1 10 1]; f) Q = diag [1 1 1000 1]; g) Q = diag [1 1 1 10]; h) Q = diag 

[1 1 1 1000]. 
 

Q  
10 0
0 10

0 0
0 0

0    0
0    0

1 0
0 1

                     (16) 

 
For high relative weight values 
 

Q  
10000 0
0 10000

0 0
0 0

0           0
0           0

1 0
0 1

                    (17) 

 
the LQR-controlled system behaves as in Fig. (4) b). However, it is necessary to adjust these relative weights to find an 
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optimal response for the LQR-controlled system. A good choice for the matrices Q and R is: 

 
 

Figure 4: a) Step response of the LQR-controlled system for small relative weights; b) Step response of the LQR-
controlled system for high relative weights. 

 

Q
255
0

          0         
 3500

0
0

               0
               0

0
0

             0       
      0

1
0

               0
               1

,   R 1                (18) 

 
The optimal matrix K calculated, which minimizes the cost function J subject to the constraint defined by the plant is:  
 
K 15.9687   51.5602    2.1649    0.5598                 (19) 
 
Figure (5) a) represents the closed loop step response of the plant and Fig. (5) b) represents the closed loop step 

response of the system composed by the plant and the controller 
 

 
 

Figure 5: a) Plant step response; b) Plant with controller step response. 
 

4.2. LQR Simulink: 
 

 
Figure 6: Simulink diagram for the compensated system with state feedback. 

 
Once the optimal matrix K has been obtained one can use Simulink for the digital simulation. The simulation diagram 

constructed is represented in Fig. (6), where the blocks A, B, C and D are replaced by the values of the state-space matrices 
and the blocks K1, K2, K3 and K4 are replaced by the first to fourth values of matrix K. The signal generator generates a 
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square input of amplitude 30 degrees and frequency 0.25 Hz. This condition is considered for a further implantation on real-
time hardware, where the plant will be replaced by the real plant interface I/O´s.   

 

 
 

Figure 7: a) Controlled state variable  ; b) Controlled state variable  ; c) Comparison between the reference 
signal and the output (state variable  ). 

 
As can be seen in the comparison of Fig. (7) c) the controlled system has a good response, once the position (state 

variable θ), which is to be controlled, tracks down the reference signal very well presenting a small overshoot, a small rise 
time and also a small settling time. As a consequence, the link vibration (state variable α) is also controlled (Fig. (7) b)). 

 
4.3. ∞ Controller Design: 
 

The disturbance at the output is typically a low frequency signal, and it will be rejected if the maximum singular value 
of S is made small over the same low frequencies. In this way, we select a low-pass filter w s  (matrix in a general case) 
with a bandwidth equal to that of the disturbance, and find a stabilizing controller that minimizes w S , where S is the 
sensitive function. Once this cost function focuses on just one closed-loop transfer function and for plants without right-half 
plane zeros the optimal controller has infinite gains. In the presence of a right-half plane zero, the stability will limit the 

controller gains, so we minimize w S
w KS  where w s  is a high-pass filter with a crossover frequency approximately 

equal to that of the desired closed-loop bandwidth. 
For the proposed tracking problem and noise attenuation we intend to find a stabilizing controller which 

minimizes w S
w T . This controller is also important for robust stability with respect to multiple perturbations at the plant 

output. It is done to simplify the design, once the use of more than two functions becomes difficult (i.e. 
w S
w T
w KS

) and the 

bandwidth requirements on each of this two functions are usually complementary and simple. Stable, low-pass and high-
pass filters are sufficient to carry out the required shaping and trade-offs. 

Once we are working in a matrix case it is necessary to have access to all the outputs (state variables variable θ and α) 
that will be controlled, so a change of the state-space matrices into the following form is necessary: 

 

A
0
0

          0         
 0

1
0

                      0
                      1

0
0

591.9697
947.2755

31.9744
31.9744

               0
               0          

,   B
0
0

56.2361
56.2361

0
0
0
0

, C 1 0 0 0
0 1 0 0 ,   D 0 0

0 0      (20) 

 
The H∞ controller design, according to the loop shape technique, associates potentially conflicting specifications like 
performance, bandwidth and robustness.  It is desirable to maximize the open loop gain, to obtain the better performance 
and it is also necessary to reduce this gain under 0dB to increase the controller robustness. Considering the bandwidth 
values, we have 4dB and 8dB corresponding to the lower and the upper values, once the crossover frequency occurs 
approximately in 2.4dB. Typically, to achieve good disturbance attenuation (performance) w s  is chosen to be small 
inside the desired control bandwidth w , and w s  is chosen to be small outside the control bandwidth, which ensures 
good stability margin (robustness), in this way 

 
w s /M

A
                    (21) 
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where : 
w  = 4 rad/s (frequency inside the bandwidth); 
A  = 0.001 (desired disturbance attenuation inside the bandwidth); 
M  = 2.0 (desired bound on S and T ) 
 

 w s M

A
                    (22) 

 
where : 
w  = 8 rad/s (frequency outside the bandwidth); 
A  = 0.05 (desired stability margin); 
M  = 2.0 (desired bound on S and T ) 
Calculating the H∞ controller with a roll-off decay of -20 to -40dB/decade in high frequencies we obtain: 
 

A

0.004 1.483e 018
8.22e 026 0.004

6.327e 017 2.41e 017
2.543e 022 3e 019

9.309e 020 3.829e 029
0 0

       160          1.955e 028
0 160

2e 006 6.829e 016
1.137e 017 2e 006

            0            0
            0             0

         64          1.47e 026
0 64

             0             0
             0             0

2.327e 019 9.572e 029
0 0

2.838e 015 4.889e 028
0 0

1.123e 005 0.0001407
1.123e 005 0.0001407

1.46e 006 1.44e 006
1.46e 006 1.46e 006

5.821e 011 3.674e 026
0 5.821e 011

        1             0 
        0            1

6.624e 005 7.039e 005
6.624e 005 7.039e 005

       6569 4916
          6569 4916

 

 

   B

0.06993
3.975e 019
1.628e 012

0
4.071e 012

0
0
0

2.421e 017
0.06993

5.114e 028
0

1.279e 027
0
0
0

 

 
C 5.712e 004   7.153e 005   7.424e 005   7.322e 005   3.369e 005   3.575e 005         3325         2500

        0                            0                             0                               0                             0                            0                                0                      0  

 
D 0 0

0 0                    (23) 
 

Which are the augmented matrices of the H∞ controller. Figure (8) shows the performance and robustness specifications 
according to the loop shaping technique while Fig. (9) a) shows the open-loop step response and Fig. (9) b) shows the step 
response of the system with the H∞ controller. 

 
Figure 8: Performance and robustness specifications 
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Figure 9: a) Open-loop step response     b) Controlled system step response. 
 

4.4. ∞ Simulink: 
 

 
 

Figure 10: Simulink diagram for the system with state feedback and the ∞ controller. 
 

After the H∞ controller has been calculated, Simulink (Fig. (10)) is used again for the digital simulation. But now 
besides replacing the plant matrices A, B, C and D by the state-space matrices we also replace the H∞ controller´s matrices 
A, B, C and D by the augmented A , B , C  and D  respectively on the construction of the simulation diagram. Because of a 
further implantation on real-time hardware, as mentioned before, a square input of amplitude 30 degrees and frequency 0.25 
Hz is also used as the reference signal.  

 

 
 

Figure 11: a) Controlled state variable ; b) Controlled state variable . 
 

Concerning the results, controlled system (Fig. (12)) based on the loop-shape design presents a satisfactory tracking of 
the reference signal and a consequent control of the link vibration as well (Fig. (11) b)), but in this case a slower system 
response can be observed by a big rise time. 
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Figure 12: Comparison between the reference signal and the output (state variable  ). 

 
5. Conclusions: 

 
Both methods compared here are very good alternatives of robust control for the proposed problem. The LQR method, 

despite being easy to implement, can sometimes be more time consuming than the H∞ loop-shaping method, since it 
depends on finding all the relative weights to achieve the desired performance because a small variation in a single 
parameter can change all the system response. Designer’s knowledge and experience to choose properly these weights are 
necessary and in specifics cases the desired performance cannot be achieved. As could be seen the H∞ loop-shaping method 
can also be used easily to stabilize robustly the feedback system, although it may not be easy to implement this method to 
stabilize systems with multiple gain crossover frequencies. Even to simple problems the desired loop-shape can be hard to 
design once we are working with conflicting restrictions, the chosen parameters for each weight matrix affects all the 
resulting system.  A problem in the LQR method that we expect is the necessity to have all the states available, in the other 
hand an experimental problem in the H∞ method is the controller complexity. However, the designer´s experience can 
overcome this entire problem in order to improve the system performance and try to achieve a higher level of robustness. 
With the results obtained it is possible now to follow to a physical implementation of the designed controllers, verify the 
controllers’ feasibility, and a further real comparison of the methods. 
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